Skip to main content
Log in

The renin-angiotensin system in mitral regurgitation: A typical example of tissue activation

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Mitral regurgitation (MR) creates a unique hemodynamic stress by inducing a low pressure form of volume overload due to ejection into the left atrium, without the pressure component that accompanies aortic regurgitation. Chronic therapy with vasodilators has been shown to reduce left ventricular wall stress, and thereby delay or obviate the need for valve replacement in aortic regurgitation; however, no data are currently available in patients with chronic MR using standard vasodilators or agents that block renin-angiotensin system (RAS) components. Studies in a clinically relevant dog model of experimentally induced MR demonstrate upregulation of the cardiac RAS. However, RAS blockade fails to improve left ventricular remodeling and function, whereas β-adrenergic blockade results in restoration of left ventricular chamber and myocyte function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pitt B, Poole-Wilson PA, Segal Ret al., on behalf of the ELITE II investigators: Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomized trial-the Losartan Heart Failure Survival Study ELITE II. Lancet 2000, 55:1582–1587.

    Article  Google Scholar 

  2. Konstam MA, Patten RD, Thomas I, et al.: Effects of losartan and captopril on left ventricular volumes in elderly patients with heart failure: results of the ELITE ventricular function substudy. Am Heart J 2000, 139:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  3. Konstam M, Kronenberg MW, Rousseau MF, et al., for the SOLVD investigators: Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilation in patients with asymptomatic systolic dysfunction. Circulation 1993, 88:2277–2283.

    PubMed  CAS  Google Scholar 

  4. The CONSENSUS Trial Study Group: Effects of enalapril on mortality in severe heart failure. N Engl J Med 1987, 316:1429–1431.

    Article  Google Scholar 

  5. The SOLVD Investigators: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1991, 327:685–691.

    Google Scholar 

  6. The SOLVD Investigators: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991, 325:292–302.

    Article  Google Scholar 

  7. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators: Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993, 342:821–828.

    Google Scholar 

  8. Pfeffer MA, Braunwald E, Moye LA, et al.: Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N Engl J Med 1992, 327:669–677.

    Article  PubMed  CAS  Google Scholar 

  9. Yusuf S, Pepine CJ, Garces C, et al.: Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992, 340:1173–1178.

    Article  PubMed  CAS  Google Scholar 

  10. Carabello BA, Nakano K, Corin W, et al.: Left ventricular function in experimental volume overload hypertrophy. Am J Physiol 1989, 256:H974-H981. Excellent review of the various etiologies of volume overload and the differential and characteristic LV remodeling pattern related to hemodynamic load, with particular emphasis on MR.

    PubMed  CAS  Google Scholar 

  11. Scoglamiglio R, Rahimtoola SH, Fasoli G, et al.: Nifedipine in asymptomatic patients with severe aortic regurgitation and normal left ventricular function. N Engl J Med 1994, 331:689–694.

    Article  Google Scholar 

  12. Levine HJ, Gaasch WH: Vasoactive drugs in chronic regurgitant lesions of the mitral and aortic valves. J Am Coll Cardiol 1996, 28:1083–1091. Excellent review and explanation of the effects of afterload reduction in various etiologies of MR.

    Article  PubMed  CAS  Google Scholar 

  13. Carabello BA, Crawford FA Jr: Valvular heart disease. N Engl J Med 1997, 337:32–41. Important review of valvular heart disease, volume overload, and response to therapy.

    Article  PubMed  CAS  Google Scholar 

  14. Dzau VJ: Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens 1989, 7:933–936.

    Article  PubMed  CAS  Google Scholar 

  15. Mento PF, Wilkes BM: Plasma angiotensins and blood pressure during converting enzyme inhibition. Hypertension 1987, 9:III42-III48.

    PubMed  CAS  Google Scholar 

  16. Baruch L, Anand I, Cohen IS, et al., for the Vasodilator Heart Failure Trial (V-HeFT) Study Group: Augmented short- and long-term hemodynamic and hormonal effects of an angiotensin receptor blocker added to angiotensin converting enzyme inhibitor therapy in patients with heart failure. Circulation 1999, 99:2658–2664.

    PubMed  CAS  Google Scholar 

  17. Jorde UP, Ennezat PV, Lisker J, et al.: Maximally recommended doses of angiotensin-converting enzyme (ACE) inhibitors do not completely prevent ACE-mediated formation of angiotensin II in chronic heart failure. Circulation 2000, 101:844–846.

    PubMed  CAS  Google Scholar 

  18. Urata H, Healy B, Stewart RW, et al.: Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 1990, 66:883–890. Excellent initial paper describing chymase in the human heart and its importance in cardiac hypertrophy and ANG II formation.

    PubMed  CAS  Google Scholar 

  19. Urata H, Kinoshita A, Misono KS, et al.: Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 1990, 265:22348–22357.

    PubMed  CAS  Google Scholar 

  20. Urata H, Kinoshita A, Perez DM, et al.: Cloning of the gene and cDNA for human heart chymase. J Biol Chem 1991, 266:17173–17179.

    PubMed  CAS  Google Scholar 

  21. Dell’Italia LJ, Husain A: Chymase: a critical evaluation of its role in angiotensin II formation and cardiovascular disease. In Drugs, Enzymes and Receptors of the Renin-Angiotensin System: Celebrating a Century of Discovery. Edited by A Husain, RM Graham. London: Harwood Academic; 2000. Timely review of the physiologic importance of chymase in cardiac hypertrophy and heart failure and atherosclerosis.

    Google Scholar 

  22. Balcells E, Meng QC, Johnson WH Jr, et al.: Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol 1997, 273:H1769-H1774.

    PubMed  CAS  Google Scholar 

  23. Dell’Italia LJ, Meng QC, Balcells E, et al.: Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol 1995, 269:H2065-H2073.

    PubMed  CAS  Google Scholar 

  24. Zisman LS, Abraham WT, Meixell GE, et al.: Angiotensin II formation in the intact human heart. J Clin Invest 1995, 95:1490–1498.

    Google Scholar 

  25. Studer R, Reinecke H, Muller B, et al.: Increased angiotensin-I converting enzyme gene expression in the failing human heart. J Clin Invest 1994, 94:301–310.

    PubMed  CAS  Google Scholar 

  26. Dell’Italia LJ, Balcells E, Meng QC, et al.: Volume-overload cardiac hypertrophy is unaffected by ACE inhibitor treatment in dogs. Am J Physiol 1997, 273:(Heart Circ Physiol 42)H961-H970.

    PubMed  CAS  Google Scholar 

  27. Su X, Wei C-C, Machide N, et al.: Differential expression of angiotensin-converting enzyme and chymase in dogs with chronic mitral regurgitation. J Mol Cell Cardiol 1999, 31:1033–1045.

    Article  PubMed  CAS  Google Scholar 

  28. Wei CC, Su X, Bishop SP, et al.: Afterload reduction and blockade of tissue renin angiotensin system does not improve left ventricular and cardiomyocyte remodeling in chronic mitral regurgitation. Circulation 1999, 100:I-863.

    Google Scholar 

  29. Dujardin KS, Enriquez-Sarano M, Bailey KR, et al.: Effect of losartan on degree of mitral regurgitation quantified by echocardiography. Am J Cardiol 2001, 87:570–576.

    Article  PubMed  CAS  Google Scholar 

  30. Wisenbaugh T, Essop R, Rothlisberger C, Sareli P: Effects of a single oral does of captopril on left ventricular performance in severe mitral regurgitation. Am J Cardiol 1992, 69:348–353.

    Article  PubMed  CAS  Google Scholar 

  31. Rothisberger C, Sareli P, Wisenbaugh T: Comparison of single dose nifedipine and captopril for chronic severe mitral regurgitation. Am J Cardiol 1994, 73:978–981.

    Article  Google Scholar 

  32. Wisenbaugh T, Sinovich V, Dullbh A, Sareli P: Six month pilot study of captopril for mildly symptomatic, severe isolated mitral and isolated aortic regurgitation. J Heart Valve Dis 1994, 3:197–204.

    PubMed  CAS  Google Scholar 

  33. Marcotte F, Honos G, Walling A, et al.: Effect of angiotensin converting enzyme inhibitor therapy in mitral regurgitation with normal left ventricular function. Can J Cardiol 1997, 13:479–485.

    PubMed  CAS  Google Scholar 

  34. Host U, Kelbaek H, Hildebrandt P, et al.: Effect of Ramipril on mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol 1997, 80:655–658.

    Article  PubMed  CAS  Google Scholar 

  35. Tischler M, Rowan M, LeWinter M: Effect of Enalapril on left ventricular mass and volumes in asymptomatic chronic, severe mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol 1998, 82:242–245.

    Article  PubMed  CAS  Google Scholar 

  36. Weber KT: Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 1997, 96:4065–4082.

    PubMed  CAS  Google Scholar 

  37. Brilla CG, Matsubara L, Weber KT: Advanced hypertensive heart disease in spontaneously hypertensive rats: lisinopril-mediated regression of myocardial fibrosis. Hypertension 1996, 28:269–275.

    PubMed  CAS  Google Scholar 

  38. Brilla CG, Funck RC, Rupp H: Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 2000, 102:1388–1393.

    PubMed  CAS  Google Scholar 

  39. Caulfield JB, Wolkowicz PE: Myocardial connective tissue alterations. Toxicol Pathol 1990, 18:488–496.

    PubMed  CAS  Google Scholar 

  40. Janicki JS, Campbell SE, Henegar JR, Brower BL: Myocardial interstitial collagen matrix remodeling in response to a chronic elevation in ventricular preload and afterload. In Cardiac-Vascular Remodeling and Functional Interaction. Edited by Maruyama Y, Hori M, Janicki JS. Tokyo: Springer-Verlag; 1997:19–31.

    Google Scholar 

  41. Stewart JA, Wei C-C, Lucchesi PA, et al.: Differential activation of ACE and chymase during early and late phases of left ventricular remodeling in response to the volume overload of mitral regurgitation. Circulation 2000, 102:II-131.

    Google Scholar 

  42. Dell’Italia LJ, Oparil S: Bradykinin in the heart: friend or foe? Circulation 1999, 100:2305–2307.

    PubMed  CAS  Google Scholar 

  43. Brilla C, Zhou G, Rupp H, et al.: Role of angiotensin II and prostaglandin E sub 2 in regulating cardiac fibroblast collagen turnover. Am J Cardiol 1995, 76:8D-13D.

    Article  PubMed  CAS  Google Scholar 

  44. Nagatoma Y, Carabello BA, Coker ML, et al.: Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol 2000, 278:H151-H161.

    Google Scholar 

  45. Imamura T, McDermott PJ, Kent RL, et al.: Acute changes in myosin heavy chain synthesis rate in pressure versus volume overload. Circ Res 1994, 75:418–425.

    PubMed  CAS  Google Scholar 

  46. Urabe Y, Mann DL, Kent RL, et al.: Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res 1992, 70:131–147.

    PubMed  CAS  Google Scholar 

  47. Nagatsu M, Zile MR, Tsutsui H, et al.: Native (-adrenergic support for left ventricular dysfunction in experimental mitral regurgitation normalizes indexes of pump and contractile function. Circulation 1994, 89:818–826.

    PubMed  CAS  Google Scholar 

  48. Mann DL, Kent RL, Parsons B, Cooper G: Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992, 85:790–804.

    PubMed  CAS  Google Scholar 

  49. Mehta RH, Supiano MA, Oral H, et al.: Relation of systemic sympathetic nervous system activation to echocardiographic left ventricular size and performance and its implication in patients with mitral regurgitation. Am J Cardiol 2000, 86:1193–1197.

    Article  PubMed  CAS  Google Scholar 

  50. Tsutsui H, Spinale FG, Nagatsu M, et al.: Effects of chronic (-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest 1994, 93:2639–2648.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell'Italia, L.J. The renin-angiotensin system in mitral regurgitation: A typical example of tissue activation. Curr Cardiol Rep 4, 97–103 (2002). https://doi.org/10.1007/s11886-002-0020-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-002-0020-x

Keywords

Navigation