Skip to main content

Advertisement

Log in

Gene therapy for vein grafts

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Bypass vein graft failure represents the greatest limitation to the current surgical therapy of myocardial and lower extremity ischemia. Elucidation of the molecular and cellular biology of neointimal hyperplasia and subsequent vein graft atherosclerosis has formed a basis for the design and implementation of gene-based therapies to prevent vein graft disease. Manipulation of the genetic regulation of vascular cell cycle progression has been shown to effectively redirect vein graft biology away from neointimal disease and toward medial hypertrophy as a more adaptive form of remodeling in response to stresses of the arterial circulation, and has prevented experimental graft atherosclerosis. Early clinical experience suggests that this approach may provide an early avenue for translation of such a gene-based therapy in humans. Other experimental gene transfer strategies have also been explored in animal models of vein grafts, which may be particularly well suited to the application of genetic manipulation given the direct access to the tissue at the time of disease initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Brewster DC, LaSalle AJ, Robinson JG, et al.: Factors affecting patency of femeropopliteal bypass grafts. Surg Gynecol Obstet 1983, 157:437–442.

    PubMed  CAS  Google Scholar 

  2. Campeau L, Enjalbert M, Lesperance J, et al.: The relation of risk factors to the development of atherosclerosis in saphenous vein bypass grafts and the progresion of disease in the native circulation: A study 10 years after aortocoronary bypass surgery. N Engl J Med 1984, 311:1329–1334.

    Article  PubMed  CAS  Google Scholar 

  3. Cox JL, Chaisson DA, Gotleib AI: Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis. Prog Cardiovasc Dis 1991, 34:45–68.

    Article  PubMed  CAS  Google Scholar 

  4. Clowes AW, Reidy MA: Prevention of stenosis after vascular reconstruction: Pharmaclogic control of intimal hyperplasia. J Vasc Surg 1991, 13:885–890.

    Article  PubMed  CAS  Google Scholar 

  5. Goldman S, Copelan J, Moritz T, et al.: Saphenous vein graft patency 1 year after coronary artery bypass surgery and of antiplatelet therapy. Circulation 1989, 80:1190–1197.

    PubMed  CAS  Google Scholar 

  6. Zwolak RM, Adams MC, Clowes AW: Kinetics of vein graft hyperplasia: association with tangential stress J Vasc Surg 1987, 5:126–136.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka H, Sukhova GK, Swanson SJ, et al.: Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation 1993, 88:1788–1803.

    PubMed  CAS  Google Scholar 

  8. Ku DD, Caulfield JB, Kirklin JK: Endothelium-dependent responses in long-term human coronary artery bypass grafts. Circulation 1991, 83:402–411.

    PubMed  CAS  Google Scholar 

  9. Morishita R, Gibbons GH, Ellison KE, et al.: Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme. J Clin Invest 1994, 94:978–984.

    PubMed  CAS  Google Scholar 

  10. Simons M, Edelman ER, DeKeyser JL, et al.: Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992, 359:67–70.

    Article  PubMed  CAS  Google Scholar 

  11. Francis SE, Hunter S, Holt CM, et al.: Release of platelet-drived growth factor activity from pig venous arterial grafts. J Thor Cardiovasc Surg 1994, 108:540–548.

    CAS  Google Scholar 

  12. Hoch JR, Stark VK, Turnipseed WD: The temporal relationship between the development of vein graft intimal hyperplasia and growth factor gene expression. J Vasc Surg 1995, 22:51–58.

    Article  PubMed  CAS  Google Scholar 

  13. Braun-Duillaeus RC, Mann MJ, Dzau VJ: Cell cycle progression. New therapeutic target for vascular proliferative disease. Circulation 1998, 98:82–89. Review of cell cycle biology as studied in the cardiovascular system, with an emphasis on potential avenues for therapeutic intervention.

    Google Scholar 

  14. Colman A: Antisense strategies in cell and developmental biology. J Cell Sc 1990, 97:399–409.

    CAS  Google Scholar 

  15. Zaug A, Been M, Cech T: The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 1986, 324:429–33.

    Article  PubMed  CAS  Google Scholar 

  16. Bielinska A, Schivdasani RA, Zhang L et al.: Regulation of gene expression with double-stranded phosphothioate oligonucleotides. Science 1990, 250:997–1000.

    Article  PubMed  CAS  Google Scholar 

  17. Mann MJ, Gibbons GH, Poston R, et al.: Efficient, pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proc Natl Acad Sci USA 1999, 96:6411–6416. A novel method of safe DNA transfer into intact tissue without use of live viral vectors is described.

    Article  PubMed  CAS  Google Scholar 

  18. Mann MJ, Gibbons GH, Kernoff RS, et al.: Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci U S A 1995, 92 4502–4506.

    Article  PubMed  CAS  Google Scholar 

  19. Mann MJ, Kernoff R, Dzau VJ: Vein graft gene therapy using E2F decoy oligonucleotides: Target gene inhibition in human veins and long term resistance to atherosclerosis in rabbits. Surg Forum Vol 1997, 48:242–244.

    CAS  Google Scholar 

  20. Braun-Dullaeus RC, Mann MJ, von der Leyen HE, Dzau VJ: Cell cycle dependent modulation of VCAM-1 expression in vascular smooth muscle cells is transcriptionally regulated through IRF-1. Circulation 1998, 98 1600.

    Google Scholar 

  21. Mann MJ, Gibbons GH, Tsao PS, et al.: Cell cycle inhibition preserves endothelial function in genetically engineered vein grafts. J Clin Invest 1997, 99:1295–1301.

    Article  PubMed  CAS  Google Scholar 

  22. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P: Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 1992, 90:626–630.

    PubMed  CAS  Google Scholar 

  23. Lemarchand P, Jones M, Yamada I, Crystal RG: In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ Res 1993, 72:1132–1138.

    PubMed  CAS  Google Scholar 

  24. Svensson EC, Marshall DJ, Woodard K, et al.: Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999, 99:201–205.

    PubMed  CAS  Google Scholar 

  25. Chen S-J, Wilson JM, Muller DWM: Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation 1994, 89:1922–1928.

    PubMed  CAS  Google Scholar 

  26. Kupfer JM, Ruam XM, Liu G, Matloff J, et al.: High efficienc gene transfer to autologous rabbit jugular vein grafts using adnovirus-transferrin/polylysine-DNA complexes. Hum Gene Ther 1994, 5:1437–1443.

    PubMed  CAS  Google Scholar 

  27. Schwartz LB, Moawad J, Svensson EC, et al.: Adenoviral-mediated gene transfer of a constitutively active form of theretinoblastoma gene product attenuates neointimal thickening in experimental vein grafts J Vasc Surg 1999, 29:874–881. Application of a viral vector with a functional transgene is described in vein grafts.

    Article  PubMed  CAS  Google Scholar 

  28. George SJ, Baker AH, Angelini GD, Newby AC: Gene transfer of tissue inhibitor of metalloproteinase-2 inhibits metalloproteinase activity and neointima formation in human saphenous veins. Gene Ther 1998, 5:1552–1560. The authors describe an attempt to supress neointimal hyperplasia by delivering a gene to vein grafts that may inhibit migration of vascular smooth muscle cells rather than replication.

    Article  PubMed  CAS  Google Scholar 

  29. Bai H, Morishita R, Kida I, et al.: Inhibition of intimal hyper-plasia after vein grafting by in vivo transfer of human senescent cell-derived inhibitor-1 gene. Gene Ther 1998 5:761–769.

    Article  PubMed  CAS  Google Scholar 

  30. Mann MJ, Whittemore AD, Donaldson MC, et al.: Ex vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomized, controlled trial. Lancet 1999, 354:1493–1498. First report of a prospective, randomized human trial of a cardiovascular gene therapy yielding direct evidence of genetic manipulation in a human clinical setting and of possible import on clinical outcome.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, M.J. Gene therapy for vein grafts. Curr Cardiol Rep 2, 29–33 (2000). https://doi.org/10.1007/s11886-000-0022-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-000-0022-5

Keywords

Navigation