Skip to main content

Advertisement

Log in

Genetic, Genomic, and Heritable Components of Benign Prostatic Hyperplasia

  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While BPH, and the complications that follow, represents the largest cause of urologic suffering both in the USA and globally, the underlying causes remain unknown. As the age of the population grows and providers dwindle, better understanding, treatments and prevention of this disease process are critical. Multiple lines of research have suggested a genetic or genomic component, and we have summarized the recent findings and avenues for future exploration.

Recent Findings

Micro-RNAs are a relatively newly found class of genetic modulators that are intimately integrated with cellular function, and a number of specific imbalances or defects in these controlling molecules are associated with BPH. Similarly, single nucleotide polymorphisms and genome-wide arrays have allowed identification of cellular pathways that also appear linked with development of histologic BPH in ageing men. Alterations of these systems, including both hormonal and nonhormonal defects such as failure of senescence, appear to be linked with this hyperplasia.

Summary

The wide suffering caused by this unplanned growth of the prostate demands better understanding of its causes. We summarize current findings and open avenues of genetic and genomic research: imbalances in specific miRNAs and other imbalanced gene/protein expression pathways, specifically including TGF-β, multiple CYP- genes, and the microenvironments of the ER and AR receptors. Failures of senescence may be involved. The overarching causes are currently indistinguishable from the downstream effects, and much work remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armitage JN, et al. Mortality in men admitted to hospital with acute urinary retention: database analysis. BMJ. 2007;335(7631):1199–202.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asplund R. Mortality in the elderly in relation to nocturnal micturition. BJU Int. 1999;84(3):297–301.

    Article  CAS  PubMed  Google Scholar 

  3. Launer BM, et al. The rising worldwide impact of benign prostatic hyperplasia. BJU Int. 2021;127(6):722–8.

    Article  PubMed  Google Scholar 

  4. Catto JWF, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.

    Article  CAS  PubMed  Google Scholar 

  5. Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5(3):182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai Y, et al. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–54.

    Article  CAS  PubMed  Google Scholar 

  7. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7.

    Article  CAS  PubMed  Google Scholar 

  8. Greco F, et al. The potential role of microRNAs as biomarkers in benign prostatic hyperplasia: a systematic review and meta-analysis. Eur Urol Focus. 2019;5(3):497–507.

    Article  PubMed  Google Scholar 

  9. Seputra KP, et al. miRNA-21 Serum evaluation in BPH, hormone sensitive prostate cancer, and castrate resistant prostate cancer: attempt for diagnostic biomarker evaluation. Acta Inform Med. 2021;29(4):266–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang N, et al. MicroRNA expression profiles in benign prostatic hyperplasia. Mol Med Rep. 2018;17(3):3853–8.

    CAS  PubMed  Google Scholar 

  11. Lloyd GL, Ricke WA, McVary KT. Inflammation, voiding and benign prostatic hyperplasia progression. J Urol. 2019;201(5):868–70.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wieszczeczyński M, et al. MicroRNA and vascular endothelial growth factor (VEGF) as new useful markers in the diagnosis of benign prostatic hyperplasia in dogs. Theriogenology. 2021;171:113–8.

    Article  PubMed  Google Scholar 

  13. Kubiczkova L, et al. TGF-β – an excellent servant but a bad master. J Transl Med. 2012;10(1):183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang R, et al. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging (Albany NY). 2019;11(21):9442–60.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, et al. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells. Cell Signal. 2021;84:110004.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, et al. LncRNA DIO3OS regulated by TGF-β1 and resveratrol enhances epithelial mesenchymal transition of benign prostatic hyperplasia epithelial cells and proliferation of prostate stromal cells. Transl Androl Urol. 2021;10(2):643–53.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roldán Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Experimental Gerontology. 2021;148:111304.

    Article  PubMed  Google Scholar 

  18. Chen X, et al. Regulation of microRNAs by rape bee pollen on benign prostate hyperplasia in rats. Andrologia. 2020;52(1):e13386.

    Article  PubMed  Google Scholar 

  19. Yang M, Xu Z, Zhuang Z. Influence of androgen receptor antagonist MDV3100 therapy on rats with benign prostatic hyperplasia. Int Neurourol J. 2021;25(3):219–28.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song H, Hu S, Jin J. 395 - CD3+ T cells suppress androgen receptor in BPH via IL-1β/miR-15b-5p signaling to affect 5 alpha reductase inhibitor treatment. European Urology Open Science. 2020;19:e646.

    Article  Google Scholar 

  21. Tanaka T, et al. Urine miR-21–5p as a potential biomarker for predicting effectiveness of tadalafil in benign prostatic hyperplasia. Future Sci OA. 2018;4(6):Fso304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Avelar RA, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21(1):91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong Q, et al. HCSGD: An integrated database of human cellular senescence genes. J Genet Genomics. 2017;44(5):227–34.

    Article  PubMed  Google Scholar 

  24. Tacutu R, et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 2018;46(D1):D1083-d1090.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson JD. The pathogenesis of benign prostatic hyperplasia. Am J Med. 1980;68(5):745–56.

    Article  CAS  PubMed  Google Scholar 

  26. Parsons JK, et al. Metabolic factors associated with benign prostatic hyperplasia. J Clin Endocrinol Metab. 2006;91(7):2562–8.

    Article  CAS  PubMed  Google Scholar 

  27. Cornu JN, et al. Correlation between prostate volume and single nucleotide polymorphisms implicated in the steroid pathway. World J Urol. 2017;35(2):293–8.

    Article  CAS  PubMed  Google Scholar 

  28. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Springer: Singapore; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  29. Chen ZP, Yan Y, Chen CJ, Li M, Chen C, Zhao SC, Song T, Liu T, Zou CH, Xu Q, Li X. The single nucleotide polymorphism rs700518 is an independent risk factor for metabolic syndrome and benign prostatic hyperplasia (MetS-BPH). Andrology. 2018;6(4):568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ajayi A, Abraham K. Understanding the role of estrogen in the development of benign prostatic hyperplasia. African J Urol. 2018;24(2):93–7.

    Article  Google Scholar 

  31. Vermeulen A, Kaufman JM, Goemaere S, Van Pottelberg I. Estradiol in elderly men. The Aging Male. 2002;5(2):98–102. https://doi.org/10.1080/tam.5.2.98.102.

    Article  CAS  PubMed  Google Scholar 

  32. Xiangyun Liu JX, Li K, Wang R, Yang Q. Aerobic exercise regulating expression of ERá and ERâ in prostate to prevent benign prostatic hyperplasia of obesity mice. Indian J Anim Res. 2019;583–586.

  33. Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation. 2011;82(4–5):184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu LH, et al. G-protein coupled estrogen receptor in breast cancer. Int J Mol Sci. 2019;20(2):306.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ignatov A, et al. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat. 2010;123(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  36. Ignatov A, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat. 2011;128(2):457–66.

    Article  CAS  PubMed  Google Scholar 

  37. Mo Z, et al. GPR30 as an initiator of tamoxifen resistance in hormone-dependent breast cancer. Breast Cancer Res. 2013;15(6):R114.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qu LG, Wardan H, Davis ID, Pezaro C, Sluka P. Effects of estrogen receptor signaling on prostate cancer carcinogenesis. J Lab Clin Med. 2020;222:56–66.

    CAS  Google Scholar 

  39. Tsurusaki T, et al. Zone-dependent expression of estrogen receptors α and β in human benign prostatic hyperplasia. J Clin Endocrinol Metab. 2003;88(3):1333–40.

    Article  CAS  PubMed  Google Scholar 

  40. Wu W-F, et al. Estrogen receptor B and treatment with a phytoestrogen are associated with inhibition of nuclear translocation of EGFR in the prostate. Proc Natl Acad Sci. 2021;118(13):e2011269118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicholson TM, et al. Estrogen receptor-α is a key mediator and therapeutic target for bladder complications of benign prostatic hyperplasia. J Urol. 2015;193(2):722–9.

    Article  CAS  PubMed  Google Scholar 

  42. Prajapatiab A, et al. Oncogenic transformation of human benign prostate hyperplasia with chronic cadmium exposure. J Trace Elem Med Biol. 2020;62:126633.

    Article  Google Scholar 

  43. McDonnell AM, Dang CH. Basic review of the cytochrome p450 system. J Adv Pract Oncol. 2013;4(4):263–8.

    PubMed  PubMed Central  Google Scholar 

  44. Qian X, et al. Genetic variants in 5p13.2 and 7q21.1 are associated with treatment for benign prostatic hyperplasia with the α-adrenergic receptor antagonist. Aging Male. 2017;20(4):250–6.

    Article  CAS  PubMed  Google Scholar 

  45. Mononen N, Schleutker J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer. J Urol. 2009;181(4):1541–9.

    Article  CAS  PubMed  Google Scholar 

  46. Zeigler-Johnson CM, et al. Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered. 2002;54(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  47. Gorjala P, et al. Role of CYP3A5 in modulating androgen receptor signaling and its relevance to African American men with prostate cancer. Cancers (Basel). 2020;12(4):989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitra R, Goodman OB Jr. CYP3A5 regulates prostate cancer cell growth by facilitating nuclear translocation of AR. Prostate. 2015;75(5):527–38.

    Article  CAS  PubMed  Google Scholar 

  49. Liang Y, et al. Association of CYP3A5*3 polymorphisms and prostate cancer risk: a meta-analysis. J Cancer Res Ther. 2018;14(Supplement):S463–7.

    CAS  PubMed  Google Scholar 

  50. Berges R, et al. Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample. World J Urol. 2011;29(2):143–8.

    Article  PubMed  Google Scholar 

  51. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  52. Vasaitis TS, Bruno RD, Njar VC. CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol. 2011;125(1–2):23–31.

    Article  CAS  PubMed  Google Scholar 

  53. Crucitta S, et al. CYP17A1 polymorphism c-362T>C predicts clinical outcome in metastatic castration-resistance prostate cancer patients treated with abiraterone. Cancer Chemother Pharmacol. 2020;86(4):527–33.

    Article  CAS  PubMed  Google Scholar 

  54. Haiman CA, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(7):743–8.

    CAS  PubMed  Google Scholar 

  55. Azzouzi AR, et al. Impact of constitutional genetic variation in androgen/oestrogen-regulating genes on age-related changes in human prostate. Eur J Endocrinol. 2002;147(4):479–84.

    Article  CAS  PubMed  Google Scholar 

  56. Habuchi T, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect1. Can Res. 2000;60(20):5710–3.

    CAS  Google Scholar 

  57. Sivoňová MK, et al. Effect of CYP17 and PSA gene polymorphisms on prostate cancer risk and circulating PSA levels in the Slovak population. Mol Biol Rep. 2012;39(8):7871–80.

    Article  PubMed  Google Scholar 

  58. Kuddus RH, Ezzi AAE, El-Saidi MA. Abstract 5304: Association of prostate cancer and benign prostate hyperplasia with polymorphisms in VDR gene, CYP17 gene and SRD5A2 gene among Lebanese men. Cancer Res. 2013;73(8_Supplement):5304–5304.

    Article  Google Scholar 

  59. Weng H, Cheng F, Geng P-L, Jin Y-H, Zeng X-T, Wang X-H. Role of CYP17 rs743572 polymorphism in benign prostatic hyperplasia: a multivariate integrated analysis. Front Physiol. 2019;10:774. https://doi.org/10.3389/fphys.2019.00774.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Blakemore J, Naftolin F. Aromatase: contributions to physiology and disease in women and men. Physiology (Bethesda). 2016;31(4):258–69.

    CAS  PubMed  Google Scholar 

  61. Ellem SJ, Risbridger GP. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J Steroid Biochem Mol Biol. 2010;118(4):246–51.

    Article  CAS  PubMed  Google Scholar 

  62. Chen S. Aromatase and breast cancer. Front Biosci. 1998;3:d922–33. https://doi.org/10.2741/a333.

  63. Brodie A, Lu Q, Nakamura J. Aromatase in the normal breast and breast cancer. J Steroid Biochem Mol Biol. 1997;61(3–6):281–6.

    Article  CAS  PubMed  Google Scholar 

  64. Ellem SJ, Risbridger GP. Aromatase and prostate cancer. Minerva Endocrinol. 2006;31(1):1–12.

    CAS  PubMed  Google Scholar 

  65. Salari K, et al. MP31-15 gene expression profiling reveals molecular subtypes of benign prostatic hyperplasia. J Urol. 2015;193(4S):e361–e361.

    Article  Google Scholar 

  66. Ng M, et al. PD16-11 Trans-ethnic genome-wide association study reveals new therapeutic targets for benign prostatic hyperplasia. J Urol. 2022;207(Supplement 5):e272.

    Article  Google Scholar 

  67. Li W, Klein RJ. Genome-wide association study identifies a role for the progesterone receptor in benign prostatic hyperplasia risk. Prostate Cancer Prostatic Dis. 2021;24(2):492–8.

    Article  CAS  PubMed  Google Scholar 

  68. Hellwege JN, et al. Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network. Sci Rep. 2019;9(1):6077.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gudmundsson J, et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat Commun. 2018;9(1):4568.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Na R, et al. A genetic variant nearGATA3implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77(11):1213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giri A, et al. Genetic determinants of metabolism and benign prostate enlargement: associations with prostate volume. PLoS ONE. 2015;10(7): e0132028.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  73. Comuzzie AG, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the hispanic population. PLoS ONE. 2012;7(12):e51954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chambers KF, et al. Stromal upregulation of lateral epithelial adhesions: Gene expression analysis of signalling pathways in prostate epithelium. J Biomed Sci. 2011;18(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh AP, et al. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett. 2008;259(1):28–38.

    Article  CAS  PubMed  Google Scholar 

  76. Pritchard CC, Nelson PS. Gene expression profiling in the developing prostate. Differentiation. 2008;76(6):624–40.

    Article  CAS  PubMed  Google Scholar 

  77. Xiao L, et al. The essential role of GATA transcription factors in adult murine prostate. Oncotarget. 2016;7(30):47891–903.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wu D, et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 2014;42(6):3607–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang Q, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007;27(3):380–92.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Samuel, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27(2):223–39.

    Article  Google Scholar 

  81. Rodriguez-Bravo V, et al. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol. 2017;14(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  82. Wilson BJ, Giguère V. Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer. 2008;7(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dydensborg AB, et al. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene. 2009;28(29):2634–42.

    Article  CAS  PubMed  Google Scholar 

  84. Na R, et al. A genetic variant near GATA3 implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77(11):1213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khan SF, et al. The roles and regulation of TBX3 in development and disease. Gene. 2020;726:144223.

    Article  CAS  PubMed  Google Scholar 

  86. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  87. Antoine S, Makedon A, Lloyd G. Identification of genes associated with the risk of requiring BPH surgery. J Urol. 2021;206(Supplement 3):e202–e202.

    Article  Google Scholar 

  88. Raja A, Hori S, Armitage JN. Hormonal manipulation of lower urinary tract symptoms secondary to benign prostatic obstruction. Indian J Urol. 2014;30(2):189–93.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  90. Koutros S, et al. Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer. Pharmacogenet Genomics. 2011;21(10):615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Marisiddaiah R, et al. Lycopene alters intracellular glutathione status and antioxidant/phase II detoxifying enzymes in human prostate cancer cells. The FASEB Journal. 2011;25(S1):344.5-344.5.

    Google Scholar 

  92. Tian H, et al. ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res. 2021;40(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yajnik V, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003;112(5):673–84.

    Article  CAS  PubMed  Google Scholar 

  94. Jackson DS, et al. Melanocortin receptor accessory proteins in adrenal disease and obesity. Front Neurosci. 2015;9:213.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hafiz S, et al. Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation. Int J Oncol. 2012;41(4):1373–80.

    Article  CAS  PubMed  Google Scholar 

  96. Geng C, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A. 2013;110(17):6997–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blattner M, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  99. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  100. Porton B, Wetsel WC, Kao HT. Synapsin III: role in neuronal plasticity and disease. Semin Cell Dev Biol. 2011;22(4):416–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Perlini LE, Benfenati F, Cancedda L. Synapsin III in brain development. Oncotarget. 2016;7(13):15288–9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen EJ, et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res. 2015;21(6):1273–80.

    Article  CAS  PubMed  Google Scholar 

  103. Chen R, Yu Y, Dong X. Progesterone receptor in the prostate: a potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol. 2017;166:91–6.

    Article  CAS  PubMed  Google Scholar 

  104. Yu Y, et al. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation. Prostate. 2015;75(10):1043–50.

    Article  CAS  PubMed  Google Scholar 

  105. Safran M, Rosen N, Twik M, Barshir R, Stein TI, Dahary D, Fishilevich S, Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T, editors. Practical Guide to Life Science Databases. Singapore: Springer; 2021. p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2.

  106. Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx31 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation. 2008;76(6):717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Antao AM, Ramakrishna S, Kim KS. The role of Nkx3.1 in cancers and stemness. Int J Stem Cells. 2021;14(2):168–79.

    PubMed  PubMed Central  Google Scholar 

  108. Irer B, et al. Increased expression of NKX3.1 in benign prostatic hyperplasia. Urology. 2009;73(5):1140–4.

    Article  PubMed  Google Scholar 

  109. Gozal NB, et al. PD46-06 Symptomatic benign prostatic hyperplasia with immune-enriched landscapes show lower incidence of prostate cancer development. J Urol. 2022;207(Supplement 5):e790.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Granville L. Lloyd.

Ethics declarations

Ethics Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makedon, A.M., Sempson, S.X., Hargis, P. et al. Genetic, Genomic, and Heritable Components of Benign Prostatic Hyperplasia. Curr Bladder Dysfunct Rep 18, 154–164 (2023). https://doi.org/10.1007/s11884-023-00697-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-023-00697-4

Keywords

Navigation