Skip to main content

Advertisement

Log in

COX Inhibitors and Overactive Bladder: The Potential for Future Therapy

  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Studies spanning four decades suggest that prostaglandins (PGs) are synthesized at high levels within the bladder by cyclooxygenase (COX)-1 and COX-2 and that PG biosynthesis during bladder filling provides a non-neuronal vesicular volume signal. Evidence is presented that interstitial cells of Cajal within the bladder seem to play a key role in PG biosynthesis, that bladder PG concentration is a function of the degree of bladder wall stretch, and that PGs serve to 1) assist in detrusor smooth muscle length adaptation of tension during bladder storage by permitting synchronized spontaneous rhythmic contraction, 2) positively modulate sensory recognition of the bladder fill state, and 3) enhance voiding contraction. Provocative clinical and experimental data support a role for PGs in overactive bladder, but the data are of limited scope. Additional studies are needed to clarify the roles played by mechanical stretch, COX isotypes, PG species and receptor subtypes, and cell-to-cell communication in bladder biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hashim H, Abrams P: Overactive bladder: an update. Curr Opin Urol 2007, 17:231–236.

    Article  PubMed  Google Scholar 

  2. Herbison P, Hay-Smith J, Ellis G, et al.: Effectiveness of anticholinergic drugs compared with placebo in the treatment of overactive bladder: systematic review. BMJ 2003, 326:841–844.

    Article  PubMed  CAS  Google Scholar 

  3. de Groat WC: A neurologic basis for the overactive bladder. Urology 1997, 50:36–52; discussion 53–56

    Article  PubMed  Google Scholar 

  4. Brading AF: A myogenic basis for the overactive bladder. Urology 1997, 50:57–67.

    Article  PubMed  CAS  Google Scholar 

  5. Drake MJ, Mills IW, Gillespie JI: Model of peripheral autonomous modules and a myovesical plexus in normal and overactive bladder function. Lancet 2001, 358:401–403.

    Article  PubMed  CAS  Google Scholar 

  6. •• Birder LA, de Groat WC: Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat Clin Pract Urol 2007, 4:46–54. This is an outstanding review for those interested in the urothelial hypothesis of overactive bladder.

    Article  PubMed  CAS  Google Scholar 

  7. Andersson KE, Arner A: Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004, 84:935–986.

    Article  PubMed  CAS  Google Scholar 

  8. Coolsaet BLRA, Blaivas JG: No detrusor is stable. Neurourol Urodyn 1985, 4:259–261.

    Article  Google Scholar 

  9. Hawthorn MH, Chapple CR, Cock M, Chess-Williams R: Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. Br J Pharmacol 2000, 129:416–419.

    Article  PubMed  CAS  Google Scholar 

  10. Klausner AP, Rourke KF, Miner AS, et al.: Potentiation of carbachol-induced detrusor smooth muscle contractions by beta-adrenoceptor activation. Eur J Pharmacol 2009, 606:191–198.

    Article  PubMed  CAS  Google Scholar 

  11. Sherrington CS: Notes on the arrangement of some motor fibres in the lumbo-sacral plexus. J Physiol 1892, 13:621–772.

    PubMed  CAS  Google Scholar 

  12. Sibley GN: A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol 1984, 354:431–443.

    PubMed  CAS  Google Scholar 

  13. van Duyl WA, van der Hoeven AAM, de Bakker JV: Synchronization of spontaneous contraction activity in smooth muscle of urinary bladder. Neurourol Urodyn 1990, 9:547–550.

    Article  Google Scholar 

  14. Drake MJ, Harvey IJ, Gillespie JI: Autonomous activity in the isolated guinea pig bladder. Exp Physiol 2003, 88:19–30.

    Article  PubMed  CAS  Google Scholar 

  15. Ratz PH, Miner AS: Length-dependent regulation of basal myosin phosphorylation and force in detrusor smooth muscle. Am J Physiol Regul Integr Comp Physiol 2003, 284:R1063–R1070.

    PubMed  CAS  Google Scholar 

  16. Azadzoi KM, Heim VK, Tarcan T, et al.: Alteration of urothelial-mediated tone in the ischemic bladder: role of eicosanoids. Neurourol Urodyn 2004, 23:258–264.

    Article  PubMed  CAS  Google Scholar 

  17. Hills NH: Prostaglandins and tone in isolated strips of mammalian bladder. Br J Pharmacol 1976, 57:464P–465P.

    PubMed  CAS  Google Scholar 

  18. Johns A, Paton DM: Effect of indomethacin on atropine-resistant transmission in rabbit and monkey urinary bladder: evidence for involvement of prostaglandins in transmission. Prostaglandins 1977, 13:245–254.

    Article  PubMed  CAS  Google Scholar 

  19. Andersson KE, Ek A, Persson CG: Effects of prostaglandins on the isolated human bladder and urethra. Acta Physiol Scand 1977, 100:165–171.

    Article  PubMed  CAS  Google Scholar 

  20. • Collins C, Klausner AP, Herrick B, et al.: Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal. J Cell Mol Med 2009 Feb 20 (Epub ahead of print). Our study revealed that ICCs encircle bundles of detrusor smooth muscle cells that highly express COX-1 and COX-2, and that inhibition of SRC correlated with inhibition of COX-1 and COX-2.

  21. Bultitude MI, Hills NH, Shuttleworth KE: Clinical and experimental studies on the action of prostaglandins and their synthesis inhibitors on detrusor muscle in vitro and in vivo. Br J Urol 1976, 48:631–637.

    Article  PubMed  CAS  Google Scholar 

  22. Abrams PH, Feneley RC: The actions of prostaglandins on the smooth muscle of the human urinary tract in vitro. Br J Urol 1975, 47:909–915.

    Article  PubMed  CAS  Google Scholar 

  23. Piper P, Vane J: The release of prostaglandins from lung and other tissues. Ann N Y Acad Sci 1971, 180:363–385.

    Article  PubMed  CAS  Google Scholar 

  24. de Jongh R, Grol S, van Koeveringe G, et al.: The localisation of cyclo-oxygenase immuno-reactivity (COX I-IR) to the urothelium and to interstitial cells in the bladder wall. J Cell Mol Med 2008 Aug 21 (Epub ahead of print).

  25. Brading AF, McCloskey KD: Mechanisms of disease: specialized interstitial cells of the urinary tract—an assessment of current knowledge. Nat Clin Pract Urol 2005, 2:546–554.

    Article  PubMed  Google Scholar 

  26. Biers SM, Reynard JM, Doore T, et al.: The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int 2006, 97:612–616.

    Article  PubMed  CAS  Google Scholar 

  27. Kubota Y, Biers SM, Kohri K, et al.: Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn 2006, 25:205–210.

    Article  PubMed  CAS  Google Scholar 

  28. Stewart CC: Mammalian smooth muscles—the cat's bladder. Am J Physiol 1900, 4:185–208.

    Google Scholar 

  29. Gilmore NJ, Vane JR: Hormones released into the circulation when the urinary bladder of the anaesthetized dog is distended. Clin Sci 1971, 41:69–83.

    PubMed  CAS  Google Scholar 

  30. Brading AF: Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol 2006, 570:13–22.

    Article  PubMed  CAS  Google Scholar 

  31. • Speich JE, Dosier C, Borgsmiller L, et al.: Adjustable passive length-tension curve in rabbit detrusor smooth muscle. J Appl Physiol 2007, 102:1746–1755. This and two other papers by Speich et al. describe how the bladder may be able to retain its shape while also displaying a high degree of compliance by exhibiting passive stiffness that is adjustable over a wide muscle length range.

    Article  PubMed  Google Scholar 

  32. • Speich JE, Almasri AM, Bhatia H, et al.: Adaptation of the length-active tension relationship in rabbit detrusor. Am J Physiol Renal Physiol 2009, 297:F1119–F1128. The first paper on length adaptation of bladder supports studies from other laboratories examining primarily airway smooth muscle and documents that the length-tension curves of bladder are not static but dynamic because they can move along the length axis. Just as a bladder is rarely “at rest,” it also may rarely be at a length other than optimal.

    Article  PubMed  CAS  Google Scholar 

  33. Kinder RB, Mundy AR: Pathophysiology of idiopathic detrusor instability and detrusor hyperreflexia. Br J Urol 1987, 60:509–515.

    Article  PubMed  CAS  Google Scholar 

  34. Cardozo LD, Stanton SL: A comparison between bromocriptine and indomethacin in the treatment of detrusor instability. J Urol 1980, 123:399–401.

    PubMed  CAS  Google Scholar 

  35. Cardozo LD, Stanton SL, Robinson H, et al.: Evaluation of flurbiprofen in detrusor instability. Br Med J 1980, 280:281–282.

    Article  PubMed  CAS  Google Scholar 

  36. Somlyo AP, Somlyo AV: Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 2000, 522:177–185.

    Article  PubMed  CAS  Google Scholar 

  37. •• Buczynski MW, Dumlao DS, Dennis EA: Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009, 50:1015–1038. This is an outstanding review by a leading expert in eicosanoid biology—a comprehensive “systems biology” approach.

    Article  PubMed  CAS  Google Scholar 

  38. Yang G, Chen L, Zhang Y, et al.: Expression of mouse membrane-associated prostaglandin E2 synthase-2 (mPGES-2) along the urogenital tract. Biochim Biophys Acta 2006, 1761:1459–1468.

    PubMed  CAS  Google Scholar 

  39. Grosser T, Fries S, FitzGerald GA: Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 2006, 116:4–15.

    Article  PubMed  CAS  Google Scholar 

  40. Guan Y, Chang M, Cho W, et al.: Cloning, expression, and regulation of rabbit cyclooxygenase-2 in renal medullary interstitial cells. Am J Physiol 1997, 273:F18–F26.

    PubMed  CAS  Google Scholar 

  41. Wheeler MA, Hausladen DA, Yoon JH, et al.: Prostaglandin E2 production and cyclooxygenase-2 induction in human urinary tract infections and bladder cancer. J Urol 2002, 168:1568–1573.

    Article  PubMed  CAS  Google Scholar 

  42. Poggesi L, Nicita G, Castellani S, et al.: The role of prostaglandins in the maintenance of the tone of the rabbit urinary bladder. Invest Urol 1980, 17:454–458.

    PubMed  CAS  Google Scholar 

  43. Leslie CA, Pavlakis AJ, Wheeler JS Jr, et al.: Release of arachidonate cascade products by the rabbit bladder; neurophysiological significance? J Urol 1984, 132:376–379.

    PubMed  CAS  Google Scholar 

  44. Brown WW, Zenser TV, Davis BB: Prostaglandin E2 production by rabbit urinary bladder. Am J Physiol 1980, 239:F452–F458.

    PubMed  CAS  Google Scholar 

  45. Maggi CA, Evangelista S, Grimaldi G, et al.: Evidence for the involvement of arachidonic acid metabolites in spontaneous and drug-induced contractions of rat urinary bladder. J Pharmacol Exp Ther 1984, 230:500–513.

    PubMed  CAS  Google Scholar 

  46. Stjarne L: Alpha-adrenoceptor mediated feed-back control of sympathetic neurotransmitter secretion in guinea-pig vas deferens. Nat New Biol 1973, 241:190–191.

    PubMed  CAS  Google Scholar 

  47. Creed KE, Callahan SM: Prostaglandins and neurotransmission at the guinea pig and rabbit urinary bladder. Pflugers Arch 1989, 413:299–302.

    Article  PubMed  CAS  Google Scholar 

  48. Burnstock G, Dumsday B, Smythe A: Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 1972, 44:451–461.

    PubMed  CAS  Google Scholar 

  49. Burnstock G, Cocks T, Paddle B, et al.: Evidence that prostaglandin is responsible for the ‘rebound contraction’ following stimulation of non-adrenergic, non-cholinergic (‘purinergic’) inhibitory nerves. Eur J Pharmacol 1975, 31:360–362.

    Article  PubMed  CAS  Google Scholar 

  50. Needleman P, Minkes MS, Douglas JR Jr: Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ Res 1974, 34:455–460.

    CAS  Google Scholar 

  51. Husted S, Sjogren C, Andersson KE: Mechanisms of the responses to non-cholinergic, non-adrenergic nerve stimulation and to ATP in isolated rabbit urinary bladder: evidence for ADP evoked prostaglandin release. Acta Pharmacol Toxicol (Copenh) 1980, 47:84–92.

    CAS  Google Scholar 

  52. Ferguson DR, Kennedy I, Burton TJ: ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J Physiol 1997, 505:503–511.

    Article  PubMed  CAS  Google Scholar 

  53. Angelico P, Guarneri L, Velasco C, et al.: Effect of cyclooxygenase inhibitors on the micturition reflex in rats: correlation with inhibition of cyclooxygenase isozymes. BJU Int 2006, 97:837–846.

    Article  PubMed  CAS  Google Scholar 

  54. Shioyama R, Aoki Y, Ito H, et al.: Long-lasting breaches in the bladder epithelium lead to storage dysfunction with increase in bladder PGE2 levels in the rat. Am J Physiol Regul Integr Comp Physiol 2008, 295:R714–R718.

    PubMed  CAS  Google Scholar 

  55. Schaible HG, Schmidt RF: Excitation and sensitization of fine articular afferents from cat’s knee joint by prostaglandin E2. J Physiol 1988, 403:91–104.

    PubMed  CAS  Google Scholar 

  56. Yokoyama O, Miwa Y, Oyama N, et al.: Antimuscarinic drug inhibits detrusor overactivity induced by topical application of prostaglandin E2 to the urethra with a decrease in urethral pressure. J Urol 2007, 178:2208–2212.

    Article  PubMed  CAS  Google Scholar 

  57. Kim JC, Park EY, Seo SI, et al.: Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J Urol 2006, 175:1773–1776; discussion 1776.

    Article  PubMed  CAS  Google Scholar 

  58. Park JM, Yang T, Arend LJ, et al.: Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am J Physiol 1999, 276:F129–F136.

    PubMed  CAS  Google Scholar 

  59. Azadzoi KM, Shinde VM, Tarcan T, et al.: Increased leukotriene and prostaglandin release, and overactivity in the chronically ischemic bladder. J Urol 2003, 169:1885–1891.

    Article  PubMed  CAS  Google Scholar 

  60. Michel MC, Barendrecht MM: Physiological and pathological regulation of the autonomic control of urinary bladder contractility. Pharmacol Ther 2008, 117:297–312.

    Article  PubMed  CAS  Google Scholar 

  61. Persson K, Pandita RK, Spitsbergen JM, et al.: Spinal and peripheral mechanisms contributing to hyperactive voiding in spontaneously hypertensive rats. Am J Physiol 1998, 275:R1366–R1373.

    PubMed  CAS  Google Scholar 

  62. Yono M, Yoshida M, Yamamoto Y, et al.: Identification of potential therapeutic targets in hypertension-associated bladder dysfunction. BJU Int 2009 Aug 18 (Epub ahead of print).

  63. Masunaga K, Yoshida M, Inadome A, et al.: Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury. Int J Urol 2006, 13:271–276.

    Article  PubMed  CAS  Google Scholar 

  64. Oner-Iyidogan Y, Kocak H, Gurdol F, et al.: Urine 8-isoprostane F2alpha concentrations in patients with neurogenic bladder due to spinal cord injury. Clin Chim Acta 2004, 339:43–47.

    Article  PubMed  CAS  Google Scholar 

  65. • Gevaert T, Owsianik G, Hutchings G, et al.: The loss and progressive recovery of voiding after spinal cord interruption in rats is associated with simultaneous changes in autonomous contractile bladder activity. Eur Urol 2008 Jun 26 (Epub ahead of print). This is an interesting model revealing a correlation between SRC (autonomous contractile activity) and ability to void—a loss-of-function-/gain-of-function-style experiment. We await studies revealing causation.

  66. Araki T, Yokoyama T, Kumon H: Effectiveness of a nonsteroidal anti-inflammatory drug for nocturia on patients with benign prostatic hyperplasia: a prospective non-randomized study of loxoprofen sodium 60 mg once daily before sleeping. Acta Med Okayama 2004, 58:45–49.

    PubMed  CAS  Google Scholar 

  67. Saito M, Kawatani M, Kinoshita Y, et al.: Effectiveness of an anti-inflammatory drug, loxoprofen, for patients with nocturia. Int J Urol 2005, 12:779–782.

    Article  PubMed  CAS  Google Scholar 

  68. Sprem M, Milicic D, Oreskovic S, et al.: Intravesically administered ketoprofen in treatment of detrusor instability: cross-over study. Croat Med J 2000, 41:423–427.

    PubMed  CAS  Google Scholar 

  69. • McCafferty GP, Misajet BA, Laping NJ, et al.: Enhanced bladder capacity and reduced prostaglandin E2-mediated bladder hyperactivity in EP3 receptor knockout mice. Am J Physiol Renal Physiol 2008, 295:F507–F514. This study revealed that bladder capacity is a function of PGE2 activation of EP3 receptors. We await additional studies to determine whether EP3 knockout mice have certain compensatory mechanisms of which we must be aware.

    Article  PubMed  CAS  Google Scholar 

  70. Schroder A, Newgreen D, Andersson KE: Detrusor responses to prostaglandin E2 and bladder outlet obstruction in wild-type and Ep1 receptor knockout mice. J Urol 2004, 172:1166–1170.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Ratz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratz, P.H., Speich, J.E. & Klausner, A.P. COX Inhibitors and Overactive Bladder: The Potential for Future Therapy. Curr Bladder Dysfunct Rep 5, 4–12 (2010). https://doi.org/10.1007/s11884-009-0037-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-009-0037-8

Keywords

Navigation