Skip to main content

Advertisement

Log in

Preventing Diabetes and Atherosclerosis in the Cardiometabolic Syndrome

  • Cardiometabolic Disease and Treatment (E. Brinton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiometabolic syndrome is characterized by abdominal adiposity, insulin resistance, hypertension, and dyslipidemia. There is a growing burden of cardiometabolic disease in many parts of the world. This review highlights the critical preventive and therapeutic measures that need to be implemented to reduce the impact of cardiometabolic syndrome on cardiovascular health.

Recent Findings

Recent cardiovascular outcome trials demonstrated that newer glucose-lowering medications reduce cardiovascular and renal events in patients with type 2 diabetes mellitus (T2DM). These medications should be considered in patients with T2DM and atherosclerotic cardiovascular disease (ASCVD). These novel drugs may also play a role in primary prevention of cardiovascular disease (CVD) and renal disease in high-risk patients without T2DM. To manage dyslipidemia associated with cardiometabolic syndrome, in addition to lifestyle interventions and statin therapy, ezetimibe, and proprotein convertase subtilisin/Kexin type 9 (PCSK9), inhibitors can be used to reduce the risk of major adverse cardiovascular outcomes (MACE) especially in patients with T2DM and coronary artery disease (CAD). The residual risk of MACE in such a high-risk population can be further mitigated by treatment with an omega-3 fatty acid such as icosapent ethyl.

Summary

Lifestyle modifications and the use of proven pharmacological therapies are essential for the prevention and progression of diabetes and ASCVD in those with the cardiometabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. https://doi.org/10.1161/circulationaha.109.192644.

    Article  CAS  PubMed  Google Scholar 

  2. Shin D, Kongpakpaisarn K, Bohra C. Trends in the prevalence of metabolic syndrome and its components in the United States 2007-2014. Int J Cardiol. 2018;259:216–9. https://doi.org/10.1016/j.ijcard.2018.01.139.

    Article  PubMed  Google Scholar 

  3. Lahey R, Khan SS. Trends in obesity and risk of cardiovascular disease. Current Epidemiology Reports 2018;5(3):243-251. https://doi.org/10.1007/s40471-018-0160-1.

  4. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  5. Roth GA, Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Naghavi M, et al. Trends and patterns of geographic variation in cardiovascular mortality among US counties, 1980-2014. Jama. 2017;317(19):1976–92. https://doi.org/10.1001/jama.2017.4150.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kalin MF, Goncalves M, John-Kalarickal J, Fonseca V. Pathogenesis of type 2 diabetes mellitus. In: Poretsky L, editor. Principles of diabetes mellitus. Cham: Springer International Publishing; 2017. p. 1–11.

    Google Scholar 

  7. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet (London, England). 1989;1(8651):1356-9. https://doi.org/10.1016/s0140-6736(89)92804-3.

  8. Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes. 2010;59(5):1117–25. https://doi.org/10.2337/db09-1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Unger RH. Glucagon physiology and pathophysiology in the light of new advances. Diabetologia. 1985;28(8):574–8. https://doi.org/10.1007/bf00281991.

    Article  CAS  PubMed  Google Scholar 

  10. Baud G, Raverdy V, Bonner C, Daoudi M, Caiazzo R, Pattou F. Sodium glucose transport modulation in type 2 diabetes and gastric bypass surgery. Surg Obes Relat Dis. 2016;12(6):1206–12. https://doi.org/10.1016/j.soard.2016.04.022.

    Article  PubMed  Google Scholar 

  11. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017;8:6. https://doi.org/10.3389/fendo.2017.00006.

    Article  Google Scholar 

  12. Patnode CD, Evans CV, Senger CA, Redmond N, Lin JS. Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults without known cardiovascular disease risk factors: updated evidence report and systematic review for the US Preventive Services Task Force. Jama. 2017;318(2):175–93. https://doi.org/10.1001/jama.2017.3303.

    Article  PubMed  Google Scholar 

  13. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019;74(10):1376–414. https://doi.org/10.1016/j.jacc.2019.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://doi.org/10.1056/NEJMoa1800389A trial showing benefits of Mediterranean diet in reducing risk of cardiovascular events in high-risk patients.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Gonzalez MA, Sanchez-Tainta A, Corella D, Salas-Salvado J, Ros E, Aros F, et al. A provegetarian food pattern and reduction in total mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am J Clin Nutr. 2014;100(Suppl 1):320s–8s. https://doi.org/10.3945/ajcn.113.071431.

    Article  CAS  PubMed  Google Scholar 

  16. Tharrey M, Mariotti F, Mashchak A, Barbillon P, Delattre M, Fraser GE. Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. Int J Epidemiol. 2018;47(5):1603–12. https://doi.org/10.1093/ije/dyy030.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huo R, Du T, Xu Y, Xu W, Chen X, Sun K, et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr. 2015;69(11):1200–8. https://doi.org/10.1038/ejcn.2014.243.

    Article  CAS  PubMed  Google Scholar 

  18. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. Jama. 2004;292(12):1440–6. https://doi.org/10.1001/jama.292.12.1440.

    Article  CAS  PubMed  Google Scholar 

  19. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi T, Azizi F. Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome. Diabetes Care. 2005;28(12):2823–31. https://doi.org/10.2337/diacare.28.12.2823.

    Article  CAS  PubMed  Google Scholar 

  20. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet (London, England). 2017;390(10107):2050-62. https://doi.org/10.1016/s0140-6736(17)32252-3.

  21. Micha R, Penalvo JL, Cudhea F, Imamura F, Rehm CD, Mozaffarian D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. Jama. 2017;317(9):912–24. https://doi.org/10.1001/jama.2017.0947.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lofvenborg JE, Andersson T, Carlsson PO, Dorkhan M, Groop L, Martinell M, et al. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. Eur J Endocrinol. 2016;175(6):605–14. https://doi.org/10.1530/eje-16-0376.

    Article  PubMed  Google Scholar 

  23. Micha R, Mozaffarian D. Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes. Nat Rev Endocrinol. 2009;5(6):335–44. https://doi.org/10.1038/nrendo.2009.79.

    Article  CAS  PubMed  Google Scholar 

  24. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet (London, England). 2016;388(10051):1302-10. https://doi.org/10.1016/s0140-6736(16)30370-1.

  25. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473. https://doi.org/10.1161/JAHA.112.004473.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vasc Pharmacol. 2018;101:9–20. https://doi.org/10.1016/j.vph.2017.11.005.

    Article  CAS  Google Scholar 

  27. Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30(7):529–42. https://doi.org/10.1007/s10654-015-0056-z.

    Article  PubMed  Google Scholar 

  28. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  29. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50. https://doi.org/10.1056/nejm200105033441801.

    Article  CAS  PubMed  Google Scholar 

  30. Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–56. https://doi.org/10.1038/nrendo.2013.256.

    Article  CAS  PubMed  Google Scholar 

  31. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet (London, England). 1998;352(9131):837–53.

    Article  Google Scholar 

  32. Bergmark BA, Bhatt DL, McGuire DK, Cahn A, Mosenzon O, Steg PG, et al. Metformin use and clinical outcomes among patients with diabetes mellitus with or without heart failure or kidney dysfunction. Circulation. 2019;140(12):1004–14. https://doi.org/10.1161/CIRCULATIONAHA.119.040144.

    Article  CAS  PubMed  Google Scholar 

  33. Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620–9. https://doi.org/10.1007/s00125-017-4337-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. Jama. 2016;316(3):313–24. https://doi.org/10.1001/jama.2016.9400.

    Article  CAS  PubMed  Google Scholar 

  35. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes care. 2019;42(Suppl 1):S90-s102. https://doi.org/10.2337/dc19-S009.

  36. Pioglitazone for diabetes prevention in impaired glucose tolerance. New England Journal of Medicine. 2011;365(9):869-. https://doi.org/10.1056/NEJMx110058.

  37. Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321–31. https://doi.org/10.1056/NEJMoa1506930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. Jama. 2008;299(13):1561–73. https://doi.org/10.1001/jama.299.13.1561.

    Article  CAS  PubMed  Google Scholar 

  39. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet (London, England). 2005;366(9493):1279-89. https://doi.org/10.1016/s0140-6736(05)67528-9.

  40. Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK, Skene AM. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study. J Am Coll Cardiol. 2007;49(17):1772–80. https://doi.org/10.1016/j.jacc.2006.12.048.

    Article  CAS  PubMed  Google Scholar 

  41. Wilcox R, Bousser MG, Betteridge DJ, Schernthaner G, Pirags V, Kupfer S, et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone Clinical Trial In macroVascular Events 04). Stroke. 2007;38(3):865–73. https://doi.org/10.1161/01.Str.0000257974.06317.49.

    Article  CAS  PubMed  Google Scholar 

  42. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Furtado RHM, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019;139(17):2022–31. https://doi.org/10.1161/circulationaha.118.038868Both GLP1-RA and SGLT2i reduce risk of cardiovascular events in patients with established atherosclerotic disease to similar degree wherease SGLT2i have a profound on preventing hospitalization of for heart failure and progression of renal disease. A potential therapeutic synergy from combination of these drugs is possible in high risk population.

    Article  CAS  PubMed  Google Scholar 

  43. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  44. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  45. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  46. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. https://doi.org/10.1056/NEJMoa1812389.

    Article  CAS  PubMed  Google Scholar 

  47. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet (London, England). 2019;393(10166):31–9. https://doi.org/10.1016/s0140-6736(18)32590-xRecent meta-analysis of three large trials of SGLT2i which demonstrated that SGLT2i reduce the risk of future cardiovascular outcomes only among participants with establishes atherosclerotic disease.

    Article  CAS  Google Scholar 

  48. Cavender MA, Norhammar A, Birkeland KI, Jorgensen ME, Wilding JP, Khunti K, et al. SGLT-2 inhibitors and cardiovascular risk: an analysis of CVD-REAL. J Am Coll Cardiol. 2018;71(22):2497–506. https://doi.org/10.1016/j.jacc.2018.01.085An important observational study showing possible primary preventive effect of SGLT2i in reducing risk of major adverse cardiovascular outcomes.

    Article  CAS  PubMed  Google Scholar 

  49. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16(2):147–58. https://doi.org/10.1111/dom.12188.

    Article  CAS  PubMed  Google Scholar 

  50. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37(7):1815–23. https://doi.org/10.2337/dc13-3055.

    Article  CAS  PubMed  Google Scholar 

  51. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8. https://doi.org/10.2337/dc14-1096.

    Article  CAS  PubMed  Google Scholar 

  52. Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28. https://doi.org/10.1186/1475-2840-13-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol. 2017;2(9):939–40. https://doi.org/10.1001/jamacardio.2017.1891.

    Article  PubMed  Google Scholar 

  54. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. The lancet Diabetes & endocrinology 2014;2(5):369-384. https://doi.org/10.1016/s2213-8587(13)70208-0.

  55. Yaribeygi H, Atkin SL, Butler AE, Sahebkar A. Sodium-glucose cotransporter inhibitors and oxidative stress: an update. J Cell Physiol. 2019;234(4):3231–7. https://doi.org/10.1002/jcp.26760.

    Article  CAS  PubMed  Google Scholar 

  56. Latva-Rasku A, Honka MJ, Kullberg J, Mononen N, Lehtimaki T, Saltevo J, et al. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care. 2019;42(5):931–7. https://doi.org/10.2337/dc18-1569.

    Article  CAS  PubMed  Google Scholar 

  57. Wilcox CS, Shen W, Boulton DW, Leslie BR, Griffen SC. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. Journal of the American Heart Association. 2018;7(4). https://doi.org/10.1161/jaha.117.007046.

  58. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care. 2016;39(Suppl 2):S165–71. https://doi.org/10.2337/dcS15-3006.

    Article  CAS  PubMed  Google Scholar 

  59. Lehrke M. SGLT2 inhibition: changing what fuels the heart. J Am Coll Cardiol. 2019;73(15):1945–7. https://doi.org/10.1016/j.jacc.2019.02.023.

    Article  PubMed  Google Scholar 

  60. Pennig J, Scherrer P, Gissler MC, Anto-Michel N, Hoppe N, Funer L, et al. Glucose lowering by SGLT2-inhibitor empagliflozin accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice. Sci Rep. 2019;9(1):17937. https://doi.org/10.1038/s41598-019-54224-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kristensen SL, Rorth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet Diabetes & Endocrinology. 2019;7(10):776–85. https://doi.org/10.1016/s2213-8587(19)30249-9An important meta-analysis of cardiovascular outcomes trial of GLP-1 RA. GLP-1RA reduced risk of major adverse cardiovascular outcomes only in participants with established atherosclerotic disease.

    Article  CAS  Google Scholar 

  62. Wilcox T, De Block C, Schwartzbard AZ, Newman JD. Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(16):1956–74. https://doi.org/10.1016/j.jacc.2020.02.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744.

    Article  CAS  PubMed  Google Scholar 

  64. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  65. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  67. Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Sr., Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet (London, England). 2018;392(10157):1519-29. https://doi.org/10.1016/s0140-6736(18)32261-x.

  68. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  69. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet (London, England). 2019;394(10193):121-30. https://doi.org/10.1016/s0140-6736(19)31149-3.

  70. Zelniker TA, Braunwald E. Clinical Benefit of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(4):435–47. https://doi.org/10.1016/j.jacc.2019.11.036A recent and comprehensive review of cardiorenal benefits of SGLT2i.

    Article  CAS  PubMed  Google Scholar 

  71. Nyirjesy P, Sobel JD, Fung A, Mayer C, Capuano G, Ways K, et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. Curr Med Res Opin. 2014;30(6):1109–19. https://doi.org/10.1185/03007995.2014.890925.

    Article  CAS  PubMed  Google Scholar 

  72. Goldenberg RM, Berard LD, Cheng AYY, Gilbert JD, Verma S, Woo VC, et al. SGLT2 Inhibitor-associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis. Clinical therapeutics. 2016;38(12):2654-64.e1. https://doi.org/10.1016/j.clinthera.2016.11.002.

  73. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xiao C, Dash S, Morgantini C, Hegele RA, Lewis GF. Pharmacological targeting of the atherogenic dyslipidemia complex: the next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes. 2016;65(7):1767–78. https://doi.org/10.2337/db16-0046.

    Article  CAS  PubMed  Google Scholar 

  75. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines 2019;73(24):e285-e350. https://doi.org/10.1016/j.jacc.2018.11.003.

  76. de Vries FM, Denig P, Pouwels KB, Postma MJ, Hak E. Primary prevention of major cardiovascular and cerebrovascular events with statins in diabetic patients: a meta-analysis. Drugs. 2012;72(18):2365–73. https://doi.org/10.2165/11638240-000000000-00000.

    Article  PubMed  Google Scholar 

  77. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2019;139(25):e1082–e143. https://doi.org/10.1161/cir.0000000000000625.

    Article  PubMed  Google Scholar 

  78. Power MC, Weuve J, Sharrett AR, Blacker D, Gottesman RF. Statins, cognition, and dementia-systematic review and methodological commentary. Nat Rev Neurol. 2015;11(4):220–9. https://doi.org/10.1038/nrneurol.2015.35.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  PubMed  Google Scholar 

  80. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107. https://doi.org/10.1056/NEJMoa1801174.

    Article  CAS  PubMed  Google Scholar 

  81. Bittner VA, Szarek M, Aylward PE, Bhatt DL, Diaz R, Edelberg JM, et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol. 2020;75(2):133–44. https://doi.org/10.1016/j.jacc.2019.10.057.

    Article  CAS  PubMed  Google Scholar 

  82. Goldberg AC, Leiter LA, Stroes ESG, Baum SJ, Hanselman JC, Bloedon LT, et al. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease: the CLEAR Wisdom Randomized Clinical Trial. Jama. 2019;322(18):1780–8. https://doi.org/10.1001/jama.2019.16585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19. https://doi.org/10.1056/NEJMoa1912387.

    Article  CAS  PubMed  Google Scholar 

  84. Rochlani Y, Kattoor AJ, Pothineni NV, Palagiri RDR, Romeo F, Mehta JL. Balancing primary prevention and statin-induced diabetes mellitus prevention. Am J Cardiol. 2017;120(7):1122–8. https://doi.org/10.1016/j.amjcard.2017.06.054A comprehensive literature review of statins and risk of diabetes mellitus.

    Article  PubMed  Google Scholar 

  85. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet (London, England). 2010;375(9716):735-42. https://doi.org/10.1016/s0140-6736(09)61965-6.

  86. Newman CB, Preiss D, Tobert JA, Jacobson TA, Page RL 2nd, Goldstein LB, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81. https://doi.org/10.1161/atv.0000000000000073.

    Article  CAS  PubMed  Google Scholar 

  87. Waters DD, Ho JE, DeMicco DA, Breazna A, Arsenault BJ, Wun CC, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J Am Coll Cardiol. 2011;57(14):1535–45. https://doi.org/10.1016/j.jacc.2010.10.047.

    Article  CAS  PubMed  Google Scholar 

  88. Waters DD, Ho JE, Boekholdt SM, DeMicco DA, Kastelein JJ, Messig M, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J Am Coll Cardiol. 2013;61(2):148–52. https://doi.org/10.1016/j.jacc.2012.09.042.

    Article  CAS  PubMed  Google Scholar 

  89. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet (London, England). 2007;369(9557):201-7. https://doi.org/10.1016/s0140-6736(07)60108-1.

  90. Erqou S, Lee CC, Adler AI. Statins and glycaemic control in individuals with diabetes: a systematic review and meta-analysis. Diabetologia. 2014;57(12):2444–52. https://doi.org/10.1007/s00125-014-3374-x.

    Article  CAS  PubMed  Google Scholar 

  91. Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet (London, England). 2008;371(9607):117-25. https://doi.org/10.1016/s0140-6736(08)60104-x.

  92. Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. Jama. 2011;305(24):2556–64. https://doi.org/10.1001/jama.2011.860.

    Article  CAS  PubMed  Google Scholar 

  93. Leiter LA, Banach M, Catapano AL, Duell PB, Gotto A, Laufs U, et al. 185-OR: efficacy and safety of bempedoic acid in patients with diabetes, prediabetes, and normoglycemia: analysis of pooled patient-level data from four phase 3 clinical trials. Diabetes. 2020;69(Supplement 1):185-OR. https://doi.org/10.2337/db20-185-OR.

  94. Fan W, Philip S, Granowitz C, Toth PP, Wong ND. Prevalence of US adults with triglycerides ≥ 150 mg/dl: NHANES 2007-2014. Cardiology and therapy. 2020;9(1):207–13. https://doi.org/10.1007/s40119-020-00170-x.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fan W, Philip S, Granowitz C, Toth PP, Wong ND. Hypertriglyceridemia in statin-treated US adults: the National Health and Nutrition Examination Survey. Journal of clinical lipidology. 2019;13(1):100–8. https://doi.org/10.1016/j.jacl.2018.11.008.

    Article  PubMed  Google Scholar 

  96. Nichols GA, Philip S, Reynolds K, Granowitz CB, Fazio S. Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes Metab. 2019;21(2):366–71. https://doi.org/10.1111/dom.13537.

    Article  CAS  PubMed  Google Scholar 

  97. Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. Jama. 2019;321(4):364–73. https://doi.org/10.1001/jama.2018.20045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Musunuru K, Kathiresan S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ Res. 2016;118(4):579–85. https://doi.org/10.1161/circresaha.115.306398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74. https://doi.org/10.1056/NEJMoa1001282.

    Article  PubMed  Google Scholar 

  100. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67. https://doi.org/10.1056/NEJMoa1107579.

    Article  CAS  PubMed  Google Scholar 

  101. Guyton JR, Slee AE, Anderson T, Fleg JL, Goldberg RB, Kashyap ML, et al. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62(17):1580–4. https://doi.org/10.1016/j.jacc.2013.07.023.

    Article  CAS  PubMed  Google Scholar 

  102. Pradhan AD, Paynter NP, Everett BM, Glynn RJ, Amarenco P, Elam M, et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J. 2018;206:80–93. https://doi.org/10.1016/j.ahj.2018.09.011.

    Article  CAS  PubMed  Google Scholar 

  103. Bucher HC, Hengstler P, Schindler C, Meier G. N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am J Med. 2002;112(4):298–304. https://doi.org/10.1016/s0002-9343(01)01114-7.

    Article  CAS  PubMed  Google Scholar 

  104. Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory From the American Heart Association. Circulation. 2017;135(15):e867–e84. https://doi.org/10.1161/cir.0000000000000482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. Jama. 2012;308(10):1024–33. https://doi.org/10.1001/2012.jama.11374.

    Article  CAS  PubMed  Google Scholar 

  106. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet (London, England). 2007;369(9567):1090-8. https://doi.org/10.1016/s0140-6736(07)60527-3.

  107. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. https://doi.org/10.1056/NEJMoa1812792A landmark trial demonstrating the cardiovascular benefits of icosapent ethyl in high-risk patients with elevated triglycerides.

    Article  CAS  PubMed  Google Scholar 

  108. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  PubMed  Google Scholar 

  109. Orringer CE, Jacobson TA, Maki KC. National Lipid Association Scientific Statement on the use of icosapent ethyl in statin-treated patients with elevated triglycerides and high or very-high ASCVD risk. Journal of clinical lipidology. 2019;13(6):860–72. https://doi.org/10.1016/j.jacl.2019.10.014.

    Article  PubMed  Google Scholar 

  110. Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, Thompson A, et al. Lipid-related markers and cardiovascular disease prediction. Jama. 2012;307(23):2499–506. https://doi.org/10.1001/jama.2012.6571.

    Article  PubMed  Google Scholar 

  111. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50. https://doi.org/10.1093/eurheartj/eht571.

    Article  CAS  PubMed  Google Scholar 

  112. Tardif JC, Ballantyne CM, Barter P, Dasseux JL, Fayad ZA, Guertin MC, et al. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J. 2014;35(46):3277–86. https://doi.org/10.1093/eurheartj/ehu171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ (Clinical research ed). 2014;349:g4379. https://doi.org/10.1136/bmj.g4379.

  114. Effects of anacetrapib in patients with atherosclerotic vascular disease. New England Journal of Medicine. 2017;377(13):1217-27. https://doi.org/10.1056/NEJMoa1706444.

  115. Barter PJ, Rye K-A, Tardif J-C, Waters DD, Boekholdt SM, Breazna A, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A<sub>1c</sub> in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) Trial. Circulation. 2011;124(5):555–62. https://doi.org/10.1161/CIRCULATIONAHA.111.018259.

    Article  CAS  PubMed  Google Scholar 

  116. Schwartz GG, Leiter LA, Ballantyne CM, Barter PJ, Black DM, Kallend D, et al. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care. 2020;43(5):1077–84. https://doi.org/10.2337/dc19-2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tardif JC, Rhéaume E, Lemieux Perreault LP, Grégoire JC, Feroz Zada Y, Asselin G, et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ Cardiovasc Genet. 2015;8(2):372–82. https://doi.org/10.1161/circgenetics.114.000663.

    Article  CAS  PubMed  Google Scholar 

  118. White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 2016;1(6):692–9. https://doi.org/10.1001/jamacardio.2016.1884.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sundstrom J, Arima H, Jackson R, Turnbull F, Rahimi K, Chalmers J, et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med. 2015;162(3):184–91. https://doi.org/10.7326/m14-0773.

    Article  PubMed  Google Scholar 

  120. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet (London, England). 2016;387(10017):435-43. https://doi.org/10.1016/s0140-6736(15)00805-3.

  121. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  CAS  PubMed  Google Scholar 

  122. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension (Dallas, Tex : 1979). 2018;71(6):1269-324. 2017. https://doi.org/10.1161/hyp.0000000000000066.

  123. Deedwania P. The ongoing saga of optimal blood pressure level in patients with diabetes mellitus and coronary artery disease. J Am Heart Assoc. 2018;7(20):e010752. https://doi.org/10.1161/jaha.118.010752.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Arnold SV, Bhatt DL, Barsness GW, Beatty AL, Deedwania PC, Inzucchi SE, et al. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: a scientific statement From the American Heart Association. Circulation. 2020;141(19):e779–806. https://doi.org/10.1161/CIR.0000000000000766.

    Article  PubMed  Google Scholar 

  125. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive clinical practice guidelines for medical care of patients with obesity. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2016;22(Suppl 3):1–203. https://doi.org/10.4158/ep161365.Gl.

    Article  Google Scholar 

  126. Garvey WT, Ryan DH, Henry R, Bohannon NJ, Toplak H, Schwiers M, et al. Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care. 2014;37(4):912–21. https://doi.org/10.2337/dc13-1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet (London, England). 2017;389(10077):1399-409. 10.1016/s0140-6736(17)30069-7.

  128. Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell metabolism. 2018;27(4):805-15.e4. https://doi.org/10.1016/j.cmet.2018.02.019.

  129. de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. 2019;381(26):2541–51. https://doi.org/10.1056/NEJMra1905136.

    Article  PubMed  Google Scholar 

  130. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet (London, England). 2015;386(9997):964-73. https://doi.org/10.1016/s0140-6736(15)00075-6.

  131. Aminian A, Nissen SE. Success (but unfinished) story of metabolic surgery. Diabetes Care. 2020;43(6):1175–7. https://doi.org/10.2337/dci20-0006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imtiaz Ahmad.

Ethics declarations

Human and Animal Rights and Informed Consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

MDS has served on the Scientific Advisory Boards of Amgen, Regeneron, and Esperion. He also serves as a consultant for Novartis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiometabolic Disease and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.I., Shapiro, M.D. Preventing Diabetes and Atherosclerosis in the Cardiometabolic Syndrome. Curr Atheroscler Rep 23, 16 (2021). https://doi.org/10.1007/s11883-021-00913-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00913-8

Keywords

Navigation