Skip to main content

Advertisement

Log in

Immunization for atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

This review summarizes experimental findings that highlight the complex roles of the immune system in atherogenesis. Immune activation can have either proatherogenic or atheroprotective effects. Immune-modulation therapy via an active or passive immunization strategy aims to exploit the atheroprotective aspects of the immune system to modulate atherosclerosis. Several experimental studies have demonstrated that such an approach is feasible and effective, raising the tantalizing possibility that an atheroprotective vaccine can be developed for clinical testing. Several potential immunogens have been identified and tested for their atheroprotective efficacy with variable results. Although several questions such as choice of optimal antigens, choice of most effective adjuvants, the optimal route of administration, durability of effects, and safety remain to be answered, we believe that a vaccine-based approach to manage atherosclerotic cardiovascular disease is a potentially viable paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Hansson GK: Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 2001, 21:1876–1890.

    PubMed  CAS  Google Scholar 

  3. Abbas AK, Lichtman AH: Cellular and Molecular Immunology. Philadelphia: WB Saunders; 2003.

    Google Scholar 

  4. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002, 111:927–930.

    Article  PubMed  CAS  Google Scholar 

  5. Xu XH, Shah PK, Faure E, et al.: Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001, 104:3103–3108.

    PubMed  CAS  Google Scholar 

  6. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ: Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002, 105:1158–1161.

    PubMed  CAS  Google Scholar 

  7. Michelsen KS, Wong MH, Shah PK, et al.: Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 2004, 101:10679–10684.

    Article  PubMed  CAS  Google Scholar 

  8. Bjorkbacka H, Kunjathoor VV, Moore KJ, et al.: Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 2004, 10:416–421.

    Article  PubMed  CAS  Google Scholar 

  9. Shaw PX, Horkko S, Chang MK, et al.: Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000, 105:1731–1740.

    PubMed  CAS  Google Scholar 

  10. Binder CJ, Shaw PX, Chang MK, et al.: The role of natural antibodies in atherogenesis. J Lipid Res 2005, 46:1353–1363.

    Article  PubMed  CAS  Google Scholar 

  11. Binder CJ, Horkko S, Dewan A, et al.: Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003, 9:736–743.

    Article  PubMed  CAS  Google Scholar 

  12. Faria-Neto JR, Chyu KY, Li XJ, et al.: Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 2006, 189:83–90.

    Article  PubMed  CAS  Google Scholar 

  13. Dansky HM, Charlton SA, Harper MM, Smith JD: T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apoliporotein E-deficient mouse. Proc Natl Acad Sci U S A 1997, 94:4642–4646.

    Article  PubMed  CAS  Google Scholar 

  14. Song L, Leung C, Schindler C: Lymphocytes are important in early atherosclerosis. J Clin Invest 2001, 108:251–259.

    Article  PubMed  CAS  Google Scholar 

  15. Daugherty A, Pure E, Delfel-Butteiger D, et al.: The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/-mice. J Clin Invest 1997, 100:1575–1580.

    Article  PubMed  CAS  Google Scholar 

  16. Major AS, Fazio S, Linton MF: B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 2002, 22:1892–1898.

    Article  PubMed  CAS  Google Scholar 

  17. Caligiuri G, Nicoletti A, Poirier B, Hansson GK: Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002, 109:745–753.

    Article  PubMed  CAS  Google Scholar 

  18. Zhou X, Nicoletti A, Elhage R, Hansson GK: Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000, 102:2919–2922.

    PubMed  CAS  Google Scholar 

  19. Zhou X, Robertson AK, Hjerpe C, Hansson GK: Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol 2006, 26:864–870.

    Article  PubMed  CAS  Google Scholar 

  20. Mallat Z, Gojova A, Brun V, et al.: Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003, 108:1232–1237.

    Article  PubMed  CAS  Google Scholar 

  21. Pinderski OL, Hedrick CC, Olvera T, et al.: Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999, 19:2847–2853.

    Google Scholar 

  22. Robertson AK, Rudling M, Zhou X, et al.: Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003, 112:1342–1350.

    Article  PubMed  CAS  Google Scholar 

  23. Tupin E, Nicoletti A, Elhage R, et al.: CD1d-dependent Activation of NKT Cells Aggravates Atherosclerosis. J Exp Med 2004, 199:417–422.

    Article  PubMed  CAS  Google Scholar 

  24. Roselaar SE, Schonfeld G, Daugherty A: Enhanced development of atherosclerosis in cholesterol-fed rabbits by suppression of cell-mediated immunity. J Clin Invest 1995, 96:1389–1394.

    PubMed  CAS  Google Scholar 

  25. Drew AF, Tipping PG: Cyclosporine treatment reduces early atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis 1995, 116:181–189.

    Article  PubMed  CAS  Google Scholar 

  26. Greenstein SM, Sun S, Calderon TM, et al.: Mycophenolate mofetil treatment reduces atherosclerosis in the cholesterol-fed rabbit. J Surg Res 2000, 91:123–129.

    Article  PubMed  CAS  Google Scholar 

  27. Matsumoto T, Saito E, Watanabe H, et al.: Influence of FK506 on experimental atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 1998, 139:95–106.

    Article  PubMed  CAS  Google Scholar 

  28. Gero S, Gergely J, Jakab L, et al.: Inhibition of cholesterol atherosclerosis by immunisation with beta-lipoprotein. Lancet 1959, 2:6–7.

    Article  PubMed  CAS  Google Scholar 

  29. Palinski W, Miller E, Witztum JL: Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 1995, 92:821–825.

    Article  PubMed  CAS  Google Scholar 

  30. Freigang S, Horkko S, Miller E, et al.: Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 1998, 18:1972–1982.

    PubMed  CAS  Google Scholar 

  31. Chyu KY, Reyes OS, Zhao X, et al.: Timing affects the efficacy of LDL immunization on atherosclerotic lesions in apo E (-/-) mice. Atherosclerosis 2004, 176:27–35.

    Article  PubMed  CAS  Google Scholar 

  32. Ameli S, Hultgardh-Nilsson A, Regnstrom J, et al.: Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 1996, 16:1074–1079.

    PubMed  CAS  Google Scholar 

  33. Palinski W, Witztum JL: Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med 2000, 247:371–380.

    Article  PubMed  CAS  Google Scholar 

  34. Horkko S, Binder CJ, Shaw PX, et al.: Immunological responses to oxidized LDL. Free Radic Biol Med 2000, 28:1771–1779.

    Article  PubMed  CAS  Google Scholar 

  35. Fredrikson GN, Hedblad B, Berglund G, et al.: Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler Thromb Vasc Biol 2003, 23:872–878.

    Article  PubMed  CAS  Google Scholar 

  36. Fredrikson GN, Soderberg I, Lindholm M, et al.: Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 2003, 23:879–884.

    Article  PubMed  CAS  Google Scholar 

  37. Chyu KY, Zhao X, Reyes OS, et al.: Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochem Biophys Res Commun 2005, 338:1982–1989.

    Article  PubMed  CAS  Google Scholar 

  38. Schiopu A, Bengtsson J, Soderberg I, et al.: Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 2004, 110:2047–2052.

    Article  PubMed  CAS  Google Scholar 

  39. Horkko S, Bird DA, Miller E, et al.: Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999, 103:117–128.

    PubMed  CAS  Google Scholar 

  40. Friedman P, Horkko S, Steinberg D, et al.: Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol concentration. J Biol Chem 2002, 277:7010–7020.

    Article  PubMed  CAS  Google Scholar 

  41. Chang MK, Bergmark C, Laurila A, et al.: Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci U S A 1999, 96:6353–6358.

    Article  PubMed  CAS  Google Scholar 

  42. Briles DE, Forman C, Hudak S, Claflin JL: Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med 1982, 156:1177–1185.

    Article  PubMed  CAS  Google Scholar 

  43. Shah PK: Focus on HDL: a new treatment paradigm for athero-thrombotic vascular disease. Expert Opin Investig Drugs 2000, 9:2139–2146.

    Article  PubMed  CAS  Google Scholar 

  44. Shah PK, Kaul S, Nilsson J, Cercek B: Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part I. Circulation 2001, 104:2376–2383.

    PubMed  CAS  Google Scholar 

  45. Shah PK, Kaul S, Nilsson J, Cercek B: Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part II. Circulation 2001, 104:2498–2502.

    PubMed  CAS  Google Scholar 

  46. Price MJ, Shah PK: New strategies in managing and preventing atherosclerosis: focus on HDL. Rev Cardiovasc Med 2002, 3:129–137.

    PubMed  Google Scholar 

  47. Rittershaus CW, Miller DP, Thomas LJ, et al.: Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2000, 20:2106–2112.

    PubMed  CAS  Google Scholar 

  48. Gaofu Q, Jun L, Xin Y, et al.: Vaccinating rabbits with a cholesteryl ester transfer protein (CETP) B-Cell epitope carried by heat shock protein-65 (HSP65) for inducing anti-CETP antibodies and reducing aortic lesions in vivo. J Cardiovasc Pharmacol 2005, 45:591–598.

    Article  PubMed  Google Scholar 

  49. Mao D, Kai G, Gaofu Q, et al.: Intramuscular immunization with a DNA vaccine encoding a 26-amino acid CETP epitope displayed by HBc protein and containing CpG DNA inhibits atherosclerosis in a rabbit model of atherosclerosis. Vaccine 2006, 24:4942–4950.

    Article  PubMed  CAS  Google Scholar 

  50. Davidson MH, Maki K, Umporowicz D, et al.: The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 2003, 169:113–120.

    Article  PubMed  CAS  Google Scholar 

  51. Naghavi M, Wyde P, Litovsky S, et al.: Influenza infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice. Circulation 2003, 107:762–768.

    Article  PubMed  CAS  Google Scholar 

  52. Madjid M, Awan I, Ali M, et al.: Influenza and atherosclerosis: vaccination for cardiovascular disease prevention. Expert Opin Biol Ther 2005, 5:91–96.

    Article  PubMed  CAS  Google Scholar 

  53. Madjid M, Naghavi M, Litovsky S, Casscells SW: Influenza and cardiovascular disease: a new opportunity for prevention and the need for further studies. Circulation 2003, 108:2730–2736.

    Article  PubMed  Google Scholar 

  54. Gurfinkel EP, de la Fuente RL, Mendiz O, Mautner B: Influenza vaccine pilot study in acute coronary syndromes and planned percutaneous coronary interventions: the FLU Vaccination Acute Coronary Syndromes (FLUVACS) Study. Circulation 2002, 105:2143–2147.

    Article  PubMed  Google Scholar 

  55. Gurfinkel EP, Leon DL, Mendiz O, Mautner B: Flu vaccination in acute coronary syndromes and planned percutaneous coronary interventions (FLUVACS) Study. Eur Heart J 2004, 25:25–31.

    Article  PubMed  Google Scholar 

  56. Davis MM, Taubert K, Benin AL, et al.: Influenza vaccination as secondary prevention for cardiovascular disease, a science advisory from the American Heart Association/American College of Cardiology. Circulation 2006, 114:1549–1553.

    Article  PubMed  Google Scholar 

  57. Taylor B, Lingam R, Simmons A, et al.: Autism and MMR vaccination in North London; no causal relationship. Mol Psychiatry 2002, 7(Suppl 2):S7–S8.

    Article  PubMed  Google Scholar 

  58. Elliman DA, Bedford HE: Measles, mumps and rubella vaccine, autism and inflammatory bowel disease: advising concerned parents. Paediatr Drugs 2002, 4:631–635.

    PubMed  Google Scholar 

  59. Orgogozo JM, Gilman S, Dartigues JF, et al.: Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003, 61:46–54.

    PubMed  CAS  Google Scholar 

  60. Afek A, George J, Gilburd B, et al.: Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J Autoimmunity 2000, 14:115–121.

    Article  CAS  Google Scholar 

  61. George J, Afek A, Gilburd B, et al.: Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J Am Coll Cardiol 2001, 38:900–905.

    Article  PubMed  CAS  Google Scholar 

  62. George J, Shoenfeld Y, Afek A, et al.: Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler Thromb Vasc Biol 1999, 19:505–510.

    PubMed  CAS  Google Scholar 

  63. George J, Afek A, Gilburd B, et al.: Induction of early atherosclerosis in LDL-receptor-deficient mice immunized with beta2-glycoprotein I. Circulation 1998, 98:1108–1115.

    PubMed  CAS  Google Scholar 

  64. Ameli S, Hultgardh-Nilsson A, Regnstrom J, et al.: Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 1996, 16:1074–1079.

    PubMed  CAS  Google Scholar 

  65. Palinski W, Miller E, Witztum JL: Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 1995, 92:821–825.

    Article  PubMed  CAS  Google Scholar 

  66. Freigang S, Horkko S, Miller E, et al.: Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 1998, 18:1972–1982.

    PubMed  CAS  Google Scholar 

  67. Gaofu Q, Jun L, Xin Y, et al.: Vaccinating rabbits with a cholesteryl ester transfer protein (CETP) B-cell epitope carried by heat shock protein-65 (HSP65) for inducing anti-CETP antibodies and reducing aortic lesions in vivo. J Cardiovasc Pharmacol 2005, 45:591–598.

    Article  PubMed  Google Scholar 

  68. Zhou X, Nicoletti A, Elhage R, Hansson GK: Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000, 102:2919–2922.

    PubMed  CAS  Google Scholar 

  69. Major AS, Wilson MT, McCaleb JL, et al.: Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Atheroscler Thromb Vasc Biol 2004, 24:2351–2357.

    Article  CAS  Google Scholar 

  70. Patel S, Thelander EM, Hernandez M, et al.: ApoE(-/-) mice develop atherosclerosis in the absence of complement component C5. Biochem Biophys Res Commun 2001, 286:164–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prediman K. Shah MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chyu, KY., Nilsson, J. & Shah, P.K. Immunization for atherosclerosis. Curr Atheroscler Rep 9, 104–109 (2007). https://doi.org/10.1007/s11883-007-0005-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-007-0005-8

Keywords

Navigation