Skip to main content

Advertisement

Log in

The role of fibrates in managing hyperlipidemia: Mechanisms of action and clinical efficacy

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

At a time when the lipid management guidelines give more and more emphasis to the identification and treatment of high-risk patients with the metabolic syndrome and diabetes, there is an obvious need to balance the known effects of low-density lipoprotein (LDL) lowering with the new evidence of clinical efficacy derived from the adjustment of high-density lipoprotein (HDL) and triglyceride levels. Whereas the statins remain the drug of choice for patients who need to reach the LDL goal, fibrate therapy may represent the best intervention for subjects with atherogenic dyslipidemia and an LDL already close to goal. In addition, the concomitant use of fibrates may significantly reduce cardiovascular risk in patients whose LDL is controlled by statin therapy. In this review, we evaluate the pharmacologic properties of the fibrate drugs, with particular attention to the effects of peroxisome proliferator activated receptor α activation in the control of dyslipidemia as well as in the attenuation of arterial inflammation. Clinical trials of fibrates, such as the Helsinki Heart Study, Veterans Affairs High-density lipoprotein Intervention Trial, Diabetes Atherosclerosis Intervention Study, and Bezafibrate Infarction Prevention trial, have conjured up a scenario for the clinical utility of fibrates and their possible superiority to statins in the management of obese, insulin-resistant, and diabetic patients presenting with near-goal LDL and inappropriate HDL and triglyceride levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloomfield Rubins H, Davenport J, Babikian V, et al., and the V.-H.S. Group: Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: The Veterans Affairs HDL Intervention Trial (VA-HIT) [comment]. Circulation 2001, 103:2828–2833.

    PubMed  CAS  Google Scholar 

  2. Rubins HB, Robins SJ, Collins D, et al.: Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Internal Med 2002, 162:2597–2604.

    Article  CAS  Google Scholar 

  3. Witztum JL: Drugs used in the treatment of hyperlipoproteinemias. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics. Edited by Hardman JG, Limbird LE. New York: McGraw-Hill; 1996:875–897.

    Google Scholar 

  4. Committee of Principal Investigators: W.H.O. cooperative trial on primary prevention of ischæmic heart disease using clofibrate to lower serum cholesterol: mortality follow-up. Lancet 1980 2:379–385.

    Google Scholar 

  5. Staels B, Dallongeville J, Auwerx J, et al.: Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998, 98:2088–2093.

    PubMed  CAS  Google Scholar 

  6. Austin MA, Hokanson JE, Edwards KL: Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 1998, 81:7B-12B.

    Article  PubMed  CAS  Google Scholar 

  7. Barbier O, Torra IP, Duguay Y, et al.: Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2002, 22:717–726.

    Article  PubMed  CAS  Google Scholar 

  8. Staels B, van Tol A, Andreu T, Auwerx J: Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat. Arterioscler Thromb 1992, 12:286–294.

    PubMed  CAS  Google Scholar 

  9. Pineda Torra I, Gervois P, Staels B: Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol 1999, 10:151–159.

    Article  PubMed  CAS  Google Scholar 

  10. Motojima K, Passilly P, Peters JM, et al.: Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem 1998, 273:16710–16714.

    Article  PubMed  CAS  Google Scholar 

  11. Auwerx J, Schoonjans K, Fruchart JC, Staels B: Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 1996, 124 (suppl):S29-S37.

    Article  PubMed  CAS  Google Scholar 

  12. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al.: PPAR alpha and PPAR gamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996, 15:5336–5348.

    PubMed  CAS  Google Scholar 

  13. Staels B, Vu-Dac N, Kosykh VA, et al.: Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995, 95:705–712.

    Article  PubMed  CAS  Google Scholar 

  14. Wang CS, McConathy WJ, Kloer HU, Alaupovic P: Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985, 75:384–390.

    PubMed  CAS  Google Scholar 

  15. Vu-Dac, N, Gervois P, Jakel H, et al.: Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to PPARa activators. J Biol Chem 2003, 278:17982–17985.

    Article  PubMed  CAS  Google Scholar 

  16. Staels B, Auwerx J: Regulation of apo A-I gene expression by fibrates. Atherosclerosis 1998, 137:S19-S23.

    Article  PubMed  CAS  Google Scholar 

  17. Hennuyer N, Poulain P, Madsen L, et al.: Beneficial effects of fibrates on apolipoprotein A-I metabolism occur independently of any peroxisome proliferative response. Circulation 1999, 99:2445–2451.

    PubMed  CAS  Google Scholar 

  18. Vu-Dac N, Schoonjans K, Kosykh V, et al.: Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 1995, 96:741–750.

    PubMed  CAS  Google Scholar 

  19. Bouly M, Masson D, Gross B, et al.: Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargement in mice treated with fenofibrate. J Biol Chem 2001, 276:25841–25847.

    Article  PubMed  CAS  Google Scholar 

  20. Brunzell JD: Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome. In The Metabolic and Molecular Bases of Inherited Disease, vol II. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw Hill; 1995:1913–1932.

    Google Scholar 

  21. Tenkanen L, Manttari M, Manninen V: Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil. Experience from the Helsinki Heart Study. Circulation 1995, 92:1779–1785.

    PubMed  CAS  Google Scholar 

  22. Adkins JC, Faulds D: Micronised fenofibrate: a review of its pharmacodynamic properties and clinical efficacy in the management of dyslipidaemia. Drugs 1997, 54:615–633.

    PubMed  CAS  Google Scholar 

  23. de Graaf J, Hendriks JC, Demacker PN, Stalenhoef AF: Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects. Normalization after clofibrate treatment. Arterioscler Thromb 1993, 13:712–719.

    PubMed  Google Scholar 

  24. Caslake MJ, Packard CJ, Gaw A, et al.: Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arterioscler Thromb 1993, 13:702–711.

    PubMed  CAS  Google Scholar 

  25. Guerin M, Bruckert E, Dolphin PJ, et al.: Fenofibrate reduces plasma cholesteryl ester transfer from HDL to VLDL and normalizes the atherogenic, dense LDL profile in combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1996, 16:763–772.

    PubMed  CAS  Google Scholar 

  26. Davidson MH: Combination therapy for dyslipidemia: safety and regulatory considerations. Am J Cardiol 2002, 90:50K-60K.

    Article  PubMed  CAS  Google Scholar 

  27. Xydakis AM, Ballantyne CM: Combination therapy for combined dyslipidemia. Am J Cardiol 2002, 90:21K-29K.

    Article  PubMed  CAS  Google Scholar 

  28. Athyros VG, Papageorgiou AA, Athyrou VV, et al.: Atorvastatin and micronized fenofibrate alone and in combination in type 2 diabetes with combined hyperlipidemia. Diabetes Care 2002, 25:1198–1202.

    Article  PubMed  CAS  Google Scholar 

  29. Mahley RW, Rall SC Jr: Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In The Metabolic Basis of Inherited Disease. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill; 1995:1953–1980.

    Google Scholar 

  30. Rader DJ, Haffner SM: Role of fibrates in the management of hypertriglyceridemia. Am J Cardiol 1999, 83:30F-35F.

    Article  PubMed  CAS  Google Scholar 

  31. Farnier M, Bonnefous F, Debbas N, Irvine A: Comparative efficacy and safety of micronized fenofibrate and simvastatin in patients with primary type IIa or IIb hyperlipidemia. Arch Intern Med 1994, 154:441–449.

    Article  PubMed  CAS  Google Scholar 

  32. Steinmetz A, Schwartz T, Hehnke U, Kaffarnik H: Multicenter comparison of micronized fenofibrate and simvastatin in patients with primary type IIA or IIB hyperlipoproteinemia. J Cardiovasc Pharmacol 1996, 27:563–570.

    Article  PubMed  CAS  Google Scholar 

  33. Spencer CM, Barradell LB: Gemfibrozil. A reappraisal of its pharmacological properties and place in the management of dyslipidaemia. Drugs 1996, 51:982–1018.

    PubMed  CAS  Google Scholar 

  34. Dierkes J, Westphal S, Luley C: Fenofibrate-induced hyperhomocysteinaemia: clinical implications and management. Drug Safety 2003, 26:81–91.

    Article  PubMed  CAS  Google Scholar 

  35. Feher MD, Hepburn AL, Hogarth MB, et al.: Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology 2003, 42:321–325.

    Article  PubMed  CAS  Google Scholar 

  36. Poynter ME, Daynes RA: Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 1998, 273:32833–32841.

    Article  PubMed  CAS  Google Scholar 

  37. Delerive P, De Bosscher K, Besnard S, et al.: Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappa B and AP-1. J Biol Chem 1999, 274:32048–32054.

    Article  PubMed  CAS  Google Scholar 

  38. Devchand PR, Keller H, Peters JM, et al.: The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 1996, 384:39–43.

    Article  PubMed  CAS  Google Scholar 

  39. Marx N, Sukhova GK, Collins T, et al.: PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999, 99:3125–3131.

    PubMed  CAS  Google Scholar 

  40. Chinetti G, Lestavel S, Bocher V, et al.: PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001, 7:53–58.

    Article  PubMed  CAS  Google Scholar 

  41. Chinetti G, Lestavel S, Fruchart JC, et al.: Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res 2003, 92:212–217.

    Article  PubMed  CAS  Google Scholar 

  42. Babaev VR, Major AS, Zhu T, et al.: Macrophage expression of PPAR-alpha inhibits atherosclerotic lesion formation in LDL-receptor deficient mice. Circulation 2001, 104:45–46.

    Google Scholar 

  43. Staels B, Koenig W, Habib A, et al.: Activation of human aortic smooth-muscle cells is inhibited by PPAR alpha but not by PPAR gamma activators. Nature 1998, 393:790–793.

    Article  PubMed  CAS  Google Scholar 

  44. Burleigh ME, Babaev VR, Oates JA, et al.: Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002, 105:1816–1823.

    Article  PubMed  CAS  Google Scholar 

  45. Jonkers IJ, Mohrschladt MF, Westendorp RG, et al.: Severe hypertriglyceridemia with insulin resistance is associated with systemic inflammation: reversal with bezafibrate therapy in a randomized controlled trial. Am J Med 2002, 112:275–280.

    Article  PubMed  CAS  Google Scholar 

  46. Despres JP, Lemieux I, Pascot A, et al.: Gemfibrozil reduces plasma C-reactive protein levels in abdominally obese men with the atherogenic dyslipidemia of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2003, 23:702–703.

    Article  PubMed  CAS  Google Scholar 

  47. Chapman MJ: Pharmacology of fenofibrate. Am J Med 1987, 83:21–25.

    Article  PubMed  CAS  Google Scholar 

  48. Broeders N, Knoop C, Antoine M, et al.: Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? [comment]. Nephrol Dialysis Transplant 2000, 15:1993–1999.

    Article  CAS  Google Scholar 

  49. Knopp RH: Drug treatment of lipid disorders. N Engl J Med 1999, 341:498–511.

    Article  PubMed  CAS  Google Scholar 

  50. Thompson PD, Clarkson P, Karas RH: Statin-associated myopathy. JAMA 2003, 289:1681–1690.

    Article  PubMed  CAS  Google Scholar 

  51. Shek A, Ferrill MJ: Statin-fibrate combination therapy. Ann Pharmacother 2001, 35:908–917.

    Article  PubMed  CAS  Google Scholar 

  52. Farmer JA: Learning from the cerivastatin experience [comment]. Lancet 2001, 358:1383–1385.

    Article  PubMed  CAS  Google Scholar 

  53. Prueksaritanont T, Zhao JJ, Ma B, et al.: Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002, 301:1042–1051.

    Article  PubMed  CAS  Google Scholar 

  54. Prueksaritanont T, Cuyue T, Qiu Y, et al.: Effects of fibrates on metabolism of statins in human hepatocytes. In Department of Drug Metabolism, Merck Research Laboratories, West Point, PA. 2002, 30:1280–1287.

  55. Prueksaritanont T, Subramanian R, Fang X, et al.: Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Disposition 2002, 30:505–512.

    Article  CAS  Google Scholar 

  56. Scandinavian Simvastatin Survival Study Group: Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344:1383–1389.

    Article  Google Scholar 

  57. Shepherd J, Cobbe SM, Ford I, et al.: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group [comment]. N Engl J Med 1995, 333:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  58. Sacks FM, Pfeffer MA, Moye LA, et al.: The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators [comment]. N Engl J Med 1996, 335:1001–1009.

    Article  PubMed  CAS  Google Scholar 

  59. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group [comment].N Engl J Med 1998, 339:1349–1357.

  60. Heart Protection Study Collaborative: MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial [comment]. Lancet 2002, 360:7–22.

    Article  Google Scholar 

  61. Downs JR, Clearfield M, Weis S, et al.: Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study [comment]. JAMA 1998, 279:1615–1622.

    Article  PubMed  CAS  Google Scholar 

  62. Herd JA, Ballantyne CM, Farmer JA, et al.: Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study [LCAS]). Am J Cardiol 1997, 80:278–286.

    Article  PubMed  CAS  Google Scholar 

  63. National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol: Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report [comment]. Circulation 2002, 106:3143–3421.

    Google Scholar 

  64. American Diabetes Association: Management of dyslipidemia in adults with diabetes. Diabetes Care 2000, 23:S57-S60.

    Article  Google Scholar 

  65. Haffner SM: Management of dyslipidemia in adults with diabetes. Diabetes Care 2003, 26:124–128.

    Article  Google Scholar 

  66. Gordon T, Castelli WP, Hjortland MC, et al.: High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am J Med 1977, 62:707–714.

    Article  PubMed  CAS  Google Scholar 

  67. Levy D, Kannel WB: Cardiovascular risks: new insights from Framingham. Am Heart J 1988, 166:266–272.

    Article  Google Scholar 

  68. Maron DJ, Fazio S, Linton MF: Current perspectives on statins. Circulation 2000, 101:207–213.

    PubMed  CAS  Google Scholar 

  69. Stein DT, Devaraj S, Balis D, et al.: Effect of statin therapy on remnant lipoprotein cholesterol levels in patients with combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2001, 21:2026–2031.

    PubMed  CAS  Google Scholar 

  70. de Faire U, Ericsson CG, Grip L, et al.: Retardation of coronary atherosclerosis: the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT) and other angiographic trials. Cardiovasc Drug Ther 1997, 11:257–263.

    Article  Google Scholar 

  71. Frick MH, Syvanne M, Nieminen MS, et al.: Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) Study Group [comment]. Circulation 1997, 96:2137–2143.

    PubMed  CAS  Google Scholar 

  72. Waters D, Higginson L, Gladstone P, et al.: Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial. Circulation 1994, 89:959–968.

    PubMed  CAS  Google Scholar 

  73. Jukema JW, Bruschke AV, van Boven AJ, et al.: Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995, 91:2528–2540.

    PubMed  CAS  Google Scholar 

  74. Elkeles RS, Diamond JR, Poulter C, et al.: Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care 1998, 21:641–648.

    Article  PubMed  CAS  Google Scholar 

  75. Anonymous: Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study [erratum appears in Lancet 2001 Jun 9;357(9271):1890]. Lancet 2001, 357:905–910.

  76. Vakkilainen J, Steiner G, Ansquer JC, et al.: Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation 2003, 107:1733–1737.

    Article  PubMed  Google Scholar 

  77. Frick MH, Elo O, Haapa K, et al.: Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987, 317:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  78. Manninen V, Elo MO, Frick MH, et al.: Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988, 260:641–651.

    Article  PubMed  CAS  Google Scholar 

  79. Carlson LA, Rosenhamer G: Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988, 223:405–418.

    Article  PubMed  CAS  Google Scholar 

  80. Rubins HB, Robins SJ, Collins D, et al.: Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999, 341:410–418.

    Article  PubMed  CAS  Google Scholar 

  81. Anonymous: Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study [comment]. Circulation 2000, 102:21–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazio, S., Linton, M.F. The role of fibrates in managing hyperlipidemia: Mechanisms of action and clinical efficacy. Curr Atheroscler Rep 6, 148–157 (2004). https://doi.org/10.1007/s11883-004-0104-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0104-8

Keywords

Navigation