Skip to main content

Advertisement

Log in

Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions

  • Allergens (Robert K. Bush & Stefan Vieths, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Allergen-antibody complexes are extremely valuable in describing the detailed molecular features of epitopes. This review summarizes insights gained from recently published co-structures and what obstacles impede the acquisition of further data.

Recent Findings

Structural epitope data helped define the epitopes of two anti-Fel d 1 antibodies undergoing phase I clinical trials, providing a greater level of detail than was possible through hydrogen-deuterium exchange protection studies. Separately, a human camelid-like antibody structure with lysozyme described several unique features in a long variable loop that interacted with the active site cleft of Gal d 4. Finally, a co-structure conclusively demonstrated that Phl p 7 could function as a superantigen and that an antibody could simultaneously recognize two epitopes. These remarkable assertions would not have been possible without visualization of the complex. Only three new complexes have appeared in the last few years, suggesting that there are major impediments to traditional production and crystallization.

Summary

The structural data was extremely valuable in describing epitopes. New techniques like cryo-EM may provide an alternative to crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Pomés A, Chruszcz M, Gustchina A, Minor W, Mueller GA, Pedersen LC, et al. 100 Years later: celebrating the contributions of x-ray crystallography to allergy and clinical immunology. J Allergy Clin Immunol. 2015;136(1):29–U87. https://doi.org/10.1016/j.jaci.2015.05.016 Comprehensive review of many allergen structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mueller GA. Contributions and future directions for structural biology in the study of allergens. Int Arch Allergy Immunol. 2017;174(2):57–66. https://doi.org/10.1159/000481078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapman MD, Wunschmann S, Pomés A. Proteases as Th2 adjuvants. Curr Allergy Asthm Res. 2007;7(5):363–7.

    Article  CAS  Google Scholar 

  4. Karp CL. Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol. 2010;125(5):955–60; quiz 61-2. https://doi.org/10.1016/j.jaci.2010.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thomas WR. Innate affairs of allergens. Clin Exp Allergy. 2013;43(2):152–63. https://doi.org/10.1111/j.1365-2222.2012.04059.x.

    Article  CAS  PubMed  Google Scholar 

  6. Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, et al. Diagnosing allergic sensitizations in the third millennium: why clinicians should know allergen molecule structures. Clin Transl Allergy. 2017;7:21. https://doi.org/10.1186/s13601-017-0158-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mueller GA, Pedersen LC, Glesner J, Edwards LL, Zakzuk J, London RE, et al. Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: relevance for molecular diagnosis. J Allergy Clin Immunol. 2015;136:1369–77. https://doi.org/10.1016/j.jaci.2015.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghosh D, Mueller GA, Schramm G, Edwards LL, Petersen A, London RE, et al. Primary identification, biochemical characterization, and immunologic properties of the allergenic pollen cyclophilin cat r 1. J Biol Chem. 2014;289(31):21374–85. https://doi.org/10.1074/Jbc.M114.559971.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Tscheppe A, Breiteneder H. Recombinant allergens in structural biology, diagnosis, and immunotherapy. Int Arch Allergy Immunol. 2017;172(4):187–202. https://doi.org/10.1159/000464104 Comprehensive review of the utitily of recombinant allergens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blake CC, Koenig DF, Mair GA, North A, Phillips DC, Sarma VR. Sturcture of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 angstrom resolution. Nature. 1965;206(4986):757–61.

    Article  CAS  Google Scholar 

  11. Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989;86(15):5938–42.

    Article  CAS  Google Scholar 

  12. Padavattan S, Schirmer T, Schmidt M, Akdis C, Valenta R, Mittermann I, et al. Identification of a B-cell epitope of hyaluronidase, a major bee venom allergen, from its crystal structure in complex with a specific Fab. J Mol Biol. 2007;368(3):742–52. https://doi.org/10.1016/j.jmb.2007.02.036.

    Article  CAS  PubMed  Google Scholar 

  13. Niemi M, Jylha S, Laukkanen ML, Soderlund H, Makinen-Kiljunen S, Kallio JM, et al. Molecular interactions between a recombinant IgE antibody and the beta-lactoglobulin allergen. Structure. 2007;15(11):1413–21. https://doi.org/10.1016/j.str.2007.09.012.

    Article  CAS  PubMed  Google Scholar 

  14. Mirza O, Henriksen A, Ipsen H, Larsen JN, Wissenbach M, Spangfort MD, et al. Dominant epitopes and allergic cross-reactivity: complex formation between a Fab fragment of a monoclonal murine IgG antibody and the major allergen from birch pollen Bet v 1. J Immunol. 2000;165(1):331–8.

    Article  CAS  Google Scholar 

  15. Padavattan S, Flicker S, Schirmer T, Madritsch C, Randow S, Reese G, et al. High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by X-ray crystallography. J Immunol. 2009;182(4):2141–51. https://doi.org/10.4049/jimmunol.0803018.

    Article  CAS  PubMed  Google Scholar 

  16. Osinski T, Pomés A, Majorek KA, Glesner J, Offermann LR, Vailes LD, et al. Structural analysis of Der p 1-antibody complexes and comparison with complexes of proteins or peptides with monoclonal antibodies. J Immunol. 2015;195(1):307–16. https://doi.org/10.4049/jimmunol.1402199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chruszcz M, Pomés A, Glesner J, Vailes LD, Osinski T, Porebski PJ, et al. Molecular determinants for antibody binding on group 1 house dust mite allergens. J Biol Chem. 2012;287(10):7388–98. https://doi.org/10.1074/jbc.M111.311159.

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Gustchina A, Alexandratos J, Wlodawer A, Wunschmann S, Kepley CL, et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J Biol Chem. 2008;283(33):22806–14. https://doi.org/10.1074/Jbc.M800937200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Gustchina A, Glesner J, Wunschmann S, Vailes LD, Chapman MD, et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol. 2011;186(1):333–40. https://doi.org/10.4049/jimmunol.1002318.

    Article  CAS  PubMed  Google Scholar 

  20. Glesner J, Vailes LD, Schlachter C, Mank N, Minor W, Osinski T, et al. Antigenic determinants of Der p 1: specificity and cross-reactivity associated with IgE antibody recognition. J Immunol. 2017;198(3):1334–44. https://doi.org/10.4049/jimmunol.1600072.

    Article  CAS  PubMed  Google Scholar 

  21. Woodfolk JA, Glesner J, Wright PW, Kepley CL, Li M, Himly M, et al. Antigenic determinants of the bilobal cockroach allergen Bla g 2. J Biol Chem. 2016;291(5):2288–301. https://doi.org/10.1074/jbc.M115.702324.

    Article  CAS  PubMed  Google Scholar 

  22. Glesner J, Wunschmann S, Li M, Gustchina A, Wlodawer A, Himly M, et al. Mechanisms of allergen-antibody interaction of cockroach allergen Bla g 2 with monoclonal antibodies that inhibit IgE antibody binding. PLoS One. 2011;6(7):e22223. https://doi.org/10.1371/journal.pone.0022223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pomés A, Chruszcz M, Gustchina A, Wlodawer A. Interfaces between allergen structure and diagnosis: know your epitopes. Curr Allergy Asthma Rep. 2015;15(8):506. https://doi.org/10.1007/s11882-014-0506-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Dall’Antonia F, Pavkov-Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods. 2014;66(1):3–21. https://doi.org/10.1016/j.ymeth.2013.07.024 Excellent review of empirical and computational epitope mapping strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orengo JM, Radin AR, Kamat V, Badithe A, Ben LH, Bennett BL, et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat Commun. 2018;9(1):1421. https://doi.org/10.1038/s41467-018-03636-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem. 2015;290(19):11905–17. https://doi.org/10.1074/jbc.M114.614842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitropoulou AN, Bowen H, Dodev TS, Davies AM, Bax HJ, Beavil RL, et al. Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proc Natl Acad Sci U S A. 2018;115(37):E8707–E16. https://doi.org/10.1073/pnas.1806840115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wachholz PA, Durham SR. Mechanisms of immunotherapy: IgG revisited. Curr Opin Allergy Clin Immunol. 2004;4(4):313–8.

    Article  CAS  Google Scholar 

  29. Shamji MH, Ljorring C, Francis JN, Calderon MA, Larche M, Kimber I, et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy. 2012;67(2):217–26. https://doi.org/10.1111/j.1398-9995.2011.02745.x.

    Article  CAS  PubMed  Google Scholar 

  30. Aalberse RC, Stapel SO, Schuurman J, Rispens T. Immunoglobulin G4: an odd antibody. Clin Exp Allergy. 2009;39(4):469–77. https://doi.org/10.1111/j.1365-2222.2009.03207.x.

    Article  CAS  PubMed  Google Scholar 

  31. James LK, Shamji MH, Walker SM, Wilson DR, Wachholz PA, Francis JN, et al. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J Allergy Clin Immunol. 2011;127(2):509–16 e1–5. https://doi.org/10.1016/j.jaci.2010.12.1080.

    Article  CAS  PubMed  Google Scholar 

  32. Bachmann MF, Kundig TM. Allergen-specific immunotherapy: is it vaccination against toxins after all? Allergy. 2017;72(1):13–23. https://doi.org/10.1111/all.12890.

    Article  CAS  PubMed  Google Scholar 

  33. Subbarayal B, Schiller D, Mobs C, de Jong NW, Ebner C, Reider N, et al. Kinetics, cross-reactivity, and specificity of Bet v 1-specific IgG4 antibodies induced by immunotherapy with birch pollen. Allergy. 2013;68(11):1377–86. https://doi.org/10.1111/all.12236.

    Article  CAS  PubMed  Google Scholar 

  34. Varga EM, Kausar F, Aberer W, Zach M, Eber E, Durham SR, et al. Tolerant beekeepers display venom-specific functional IgG4 antibodies in the absence of specific IgE. J Allergy Clin Immunol. 2013;131(5):1419–21. https://doi.org/10.1016/j.jaci.2012.08.037.

    Article  CAS  PubMed  Google Scholar 

  35. Kaiser L, Gronlund H, Sandalova T, Ljunggren HG, Achour A, Schneider G, et al. Three-dimensional structure of Fel d 1, the major allergen in cat. Int Arch Allergy Immunol. 2003;132(1):25–6. https://doi.org/10.1159/000073261.

    Article  PubMed  Google Scholar 

  36. Willison LN, Zhang Q, Su MN, Teuber SS, Sathe SK, Roux KH. Conformational epitope mapping of Pru du 6, a major allergen from almond nut. Mol Immunol. 2013;55(3–4):253–63. https://doi.org/10.1016/j.molimm.2013.02.004.

    Article  CAS  PubMed  Google Scholar 

  37. Guan XY, Noble KA, Tao YQ, Roux KH, Sathe SK, Young NL, et al. Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. J Mass Spectrom. 2015;50(6):812–9. https://doi.org/10.1002/jms.3589.

    Article  CAS  PubMed  Google Scholar 

  38. Brier S, Le Mignon M, Jain K, Lebrun C, Peurois F, Kellenberger C, et al. Characterization of epitope specificities of reference antibodies used for the quantification of the birch pollen allergen Bet v 1. Allergy. 2018;73(5):1032–40. https://doi.org/10.1111/all.13364.

    Article  CAS  PubMed  Google Scholar 

  39. Williams DC Jr, Benjamin DC, Poljak RJ, Rule GS. Global changes in amide hydrogen exchange rates for a protein antigen in complex with three different antibodies. J Mol Biol. 1996;257(4):866–76.

    Article  CAS  Google Scholar 

  40. Mueller GA, Smith AM, Chapman MD, Rule GS, Benjamin DC. Hydrogen exchange nuclear magnetic resonance spectroscopy mapping of antibody epitopes on the house dust mite allergen Der p 2. J Biol Chem. 2001;276(12):9359–65. https://doi.org/10.1074/jbc.M010812200.

    Article  CAS  PubMed  Google Scholar 

  41. Flicker S, Steinberger P, Norderhaug L, Sperr WR, Majlesi Y, Valent P, et al. Conversion of grass pollen allergen-specific human IgE into a protective IgG(1) antibody. Eur J Immunol. 2002;32(8):2156–62. https://doi.org/10.1002/1521-4141(200208)32:8<2156::Aid-Immu2156>3.0.Co;2-A.

    Article  CAS  PubMed  Google Scholar 

  42. Patil SU, Ogunniyi AO, Calatroni A, Tadigotla VR, Ruiter B, Ma A, et al. Peanut oral immunotherapy transiently expands circulating Ara h 2-specific B cells with a homologous repertoire in unrelated subjects. J Allergy Clin Immunol. 2015;136(1):125–U253. https://doi.org/10.1016/j.jaci.2015.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8. https://doi.org/10.1038/363446a0.

    Article  CAS  PubMed  Google Scholar 

  44. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97. https://doi.org/10.1146/annurev-biochem-063011-092449.

    Article  CAS  PubMed  Google Scholar 

  45. Riechmann L, Muyldermans S. Single domain antibodies: comparison of camel VH and camelised human VH domains. J Immunol Methods. 1999;231(1–2):25–38. https://doi.org/10.1016/S0022-1759(99)00138-6.

    Article  CAS  PubMed  Google Scholar 

  46. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103(12):4586–91. https://doi.org/10.1073/pnas.0505379103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Genst E, Silence K, Ghahroudi MA, Decanniere K, Loris R, Kinne J, et al. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J Biol Chem. 2005;280(14):14114–21. https://doi.org/10.1074/jbc.M413011200.

    Article  CAS  PubMed  Google Scholar 

  48. Stanfield RL, Dooley H, Flajnik MF, Wilson IA. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science. 2004;305(5691):1770–3. https://doi.org/10.1126/science.1101148.

    Article  CAS  PubMed  Google Scholar 

  49. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A. 2000;97(10):5399–404.

    Article  CAS  Google Scholar 

  50. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. https://doi.org/10.1016/j.jmb.2007.05.022.

    Article  CAS  PubMed  Google Scholar 

  51. Graille M, Stura EA, Housden NG, Beckingham JA, Bottomley SP, Beale D, et al. Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure. 2001;9(8):679–87.

    Article  CAS  Google Scholar 

  52. James LK. The cloning and expression of human monoclonal antibodies: implications for allergen immunotherapy. Curr Allergy Asthma Rep. 2016;16(2):15. https://doi.org/10.1007/s11882-015-0588-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robinson WH. Sequencing the functional antibody repertoire—diagnostic and therapeutic discovery. Nat Rev Rheumatol. 2015;11(3):171–82. https://doi.org/10.1038/nrrheum.2014.220.

    Article  CAS  PubMed  Google Scholar 

  54. Kovari LC, Momany C, Rossmann MG. The use of antibody fragments for crystallization and structure determinations. Structure. 1995;3(12):1291–3.

    Article  CAS  Google Scholar 

  55. Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol. 2017;43(1):31–42. https://doi.org/10.3109/1040841X.2016.1150959.

    Article  CAS  PubMed  Google Scholar 

  56. Long NE, Sullivan BJ, Ding HM, Doll S, Ryan MA, Hitchcock CL, et al. Linker engineering in anti-TAG-72 antibody fragments optimizes biophysical properties, serum half-life, and high-specificity tumor imaging. J Biol Chem. 2018;293(23):9030–40. https://doi.org/10.1074/jbc.RA118.002538.

    Article  CAS  PubMed  Google Scholar 

  57. Perisic O, Webb PA, Holliger P, Winter G, Williams RL. Crystal structure of a diabody, a bivalent antibody fragment. Structure. 1994;2(12):1217–26.

    Article  CAS  Google Scholar 

  58. Mueller GA, Ankney JA, Glesner J, Khurana T, Edwards LL, Pedersen LC, et al. Characterization of an anti-Bla g 1 scFv: epitope mapping and cross-reactivity. Mol Immunol. 2014;59(2):200–7. https://doi.org/10.1016/j.molimm.2014.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013;4:217. https://doi.org/10.3389/fimmu.2013.00217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif. 2001;23(2):338–47. https://doi.org/10.1006/prep.2001.1520.

    Article  CAS  PubMed  Google Scholar 

  61. Schmiedl A, Breitling F, Winter CH, Queitsch I, Dubel S. Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J Immunol Methods. 2000;242(1–2):101–14.

    Article  CAS  Google Scholar 

  62. Yu CM, Peng HP, Chen IC, Lee YC, Chen JB, Tsai KC, et al. Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface. PLoS One. 2012;7(3):e33340. https://doi.org/10.1371/journal.pone.0033340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  CAS  Google Scholar 

  64. Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100(8):3451–61. https://doi.org/10.1007/s00253-016-7388-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jain NK, Barkowski-Clark S, Altman R, Johnson K, Sun F, Zmuda J, et al. A high density CHO-S transient transfection system: comparison of ExpiCHO and Expi293. Protein Expr Purif. 2017;134:38–46. https://doi.org/10.1016/j.pep.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  66. Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell line techniques and gene editing tools for antibody production: a review. Front Pharmacol. 2018;9:630. https://doi.org/10.3389/fphar.2018.00630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, et al. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell. 2016;165(7):1698–707. https://doi.org/10.1016/j.cell.2016.05.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khoshouei M, Radjainia M, Baumeister W, Danev R. Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat Commun. 2017;8:16099. https://doi.org/10.1038/ncomms16099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health (Research Project nos. Z01-ES102906-01, G.A.M. and ZIA-ES102645, L.C.P.), and in part by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI077653 (to A.P., contact PI). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Mueller.

Ethics declarations

Conflict of Interest

Dr. Pomés reports grants from NIH-NIAID during the conduct of the study and is employed by Indoor Biotechnologies, Inc., outside the submitted work. Drs. Mueller, Min, Foo, and Pedersen declare no conflict of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, G.A., Min, J., Foo, A.C.Y. et al. Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Curr Allergy Asthma Rep 19, 17 (2019). https://doi.org/10.1007/s11882-019-0848-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-019-0848-4

Keywords

Navigation