Skip to main content
Log in

Sex-specific genetic architecture of asthma-associated quantitative trait loci in a founder population

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Identifying genes that influence susceptibility to asthmarelated and atopy-related phenotypes has been challenging, owing to clinical heterogeneity and a complex underlying genetic architecture that includes both gene-gene and gene-environment interactions. In this article, we report the results of genome-wide linkage and association studies of eight asthma-associated quantitative traits in the Hutterites, a founder population of European descent. Our study revealed significant sex-specific genetic architecture for at least five of these traits, and identified 13 genome-wide significant quantitative trait loci (QTL) by linkage or association that are present in only one of the sexes (nine in males, four in females).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. von MutiusE, Braun-Fahrlander C, Schierl R, et al.: Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 2000, 30:1230–1234.

    Article  Google Scholar 

  2. von Mutius E, Martinez FD, Fritzsch C, et al.: Skin test reactivity and number of siblings. BMJ 1994, 308:692–695.

    Google Scholar 

  3. Wickens KL, Crane J, Kemp TJ, et al.: Family size, infections, and asthma prevalence in New Zealand children. Epidemiology 1999, 10:699–705.

    Article  PubMed  CAS  Google Scholar 

  4. Ball TM, Castro-Rodriguez JA, Griffith KA, et al.: Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med 2000, 343:538–543.

    Article  PubMed  CAS  Google Scholar 

  5. Le Moual N, Siroux V, Pin I, et al.: Asthma severity and exposure to occupational asthmogens. Am J Respir Crit Care Med 2005, 172:440–445.

    Article  Google Scholar 

  6. Burr ML, Butland BK, King S, Vaughan-Williams E: Changes in asthma prevalence: two surveys 15 years apart. Arch Dis Child 1989, 64:1452–1456.

    Article  PubMed  CAS  Google Scholar 

  7. Beasley R: The burden of asthma with specific reference to the United States. J Allergy Clin Immunol 2002, 109:S482-S489.

    Article  PubMed  Google Scholar 

  8. Bach JF: The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002, 347:911–920.

    Article  PubMed  Google Scholar 

  9. Meyers DA, Marsh DG: Allergy and asthma. In The Genetic Basis of Common Diseases. Edited by King RA, Rotter JI, Motulsky AG. New York: Oxford University Press; 1992:130–149.

    Google Scholar 

  10. Ober C, Hoffjan S: Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006 [E-pub ahead of print]. A comprehensive, recent review of association studies of asthma and atopy phenotypes.

  11. Ober C: Perspectives on the past decade of asthma genetics. J Allergy Clin Immunol 2005, 116:274–278.

    Article  PubMed  CAS  Google Scholar 

  12. Ober C, Thompson EE: Rethinking genetic models of asthma: the role of environmental modifiers. Curr Opin Immunol 2005, 17:670–678.

    Article  PubMed  CAS  Google Scholar 

  13. Mackay TF: The genetic architecture of quantitative traits: lessons from Drosophila. Curr Opin Genet Dev 2004, 14:253–257.

    Article  PubMed  CAS  Google Scholar 

  14. Korstanje R, Li R, Howard T, et al.: Influence of sex and diet on quantitative trait loci for HDL cholesterol levels in an SM/J by NZB/BlNJ intercross population. J Lipid Res 2004, 45:881–888.

    Article  PubMed  CAS  Google Scholar 

  15. Ueno T, Tremblay J, Kunes J, et al.: Rat model of familial combined hyperlipidemia as a result of comparative mapping. Physiol Genomics 2004, 17:38–47.

    Article  PubMed  CAS  Google Scholar 

  16. Martin AO: The founder effect in a human isolate: evolutionary implications. Am J Phys Anthropol 1970, 32:351–368.

    Article  PubMed  CAS  Google Scholar 

  17. Steinberg AG, Bleibtreu HK, Kurczynski TW, et al.: Genetic studies in an inbred human isolate. In Proceedings of the Third International Congress of Human Genetics. Edited by Crow JF, Neel JV. Baltimore: Johns Hopkins University Press; 1967:267–290.

    Google Scholar 

  18. Ober C, Abney M, McPeek MS: The genetic dissection of complex traits in a founder population. Am J Hum Genet 2001, 69:1068–1079.

    Article  PubMed  CAS  Google Scholar 

  19. Ober C, Cox N, Parry R, et al.: Genome-wide search for asthma susceptibility loci in a founder population. Hum Mol Genet 1998, 7:1393–1398.

    Article  PubMed  CAS  Google Scholar 

  20. Ober C, Tsalenko A, Parry R, Cox NJ: A second generation genome-wide screen for asthma susceptibility alleles in a founder population. Am J Hum Genet 2000, 67:1154–1162.

    PubMed  CAS  Google Scholar 

  21. Ober C, Tsalenko A, Willadsen SA, et al.: Genome-wide screen for atopy susceptibility alleles in the Hutterites. Clin Exp Allergy (Supp) 1999, 4:11–15.

    Google Scholar 

  22. CSGA: A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nat Genet 1997, 15:389–392.

  23. Lester LA, Rich SS, Blumenthal MN, et al.: Ethnic differences in asthma and associated phenotypes: Collaborative Study on the Genetics of Asthma. J Allergy Clin Immunol 2001, 108:357–362.

    Article  PubMed  CAS  Google Scholar 

  24. Koppelman GH, Stine OC, Xu J, et al.: Genome-wide search for atopy susceptibility genes in Dutch families with asthma. J Allergy Clin Immunol 2002, 109:498–506.

    Article  PubMed  CAS  Google Scholar 

  25. Bourgain C, Hoffjan S, Nicolae R, et al.: Novel case-control test in a founder population identifies p-selectin as an atopy-susceptibility locus. Am J Hum Genet 2003, 73:612–626.

    Article  PubMed  CAS  Google Scholar 

  26. Chan A, Newman DL, Shon M, Ober C: Variation in the type I interferon gene cluster on 9p21 influences susceptibility to asthma and atopy. Genes Immun 2006, [E-pub ahead of print].

  27. Donfack J, Kogut P, Forsythe S, et al.: Sequence variation in the promoter region of the cholinergic receptor muscarinic 3 gene and asthma and atopy. J Allergy Clin Immunol 2003, 111:527–532.

    Article  PubMed  CAS  Google Scholar 

  28. Donfack J, Schneider D, Tan Z, et al.: Variation in conserved non-coding sequences on chromosome 51 and susceptibility to asthma and atopy. Resp Res 2005, 6:145.

    Article  CAS  Google Scholar 

  29. Donfack J, Tsalenko A, Hoki DM, et al.: HLA-DRB1*01 alleles and sensitization to cockroach allergies. JACI 2000, 105:960–966.

    CAS  Google Scholar 

  30. Weiss LA, Lester LA, Gern JE, et al.: Variation in ITGB3 is associated with asthma and sensitization to mold allergen in four populations. Am J Respir Crit Care Med 2005, 172:67–73.

    Article  PubMed  Google Scholar 

  31. Zhang J, Schneider D, Ober C, McPeek MS: Multilocus linkage disequilibrium mapping by the decay of haplotype sharing with samples of related individuals. Genet Epidemiol 2005, 29:128–140.

    Article  PubMed  Google Scholar 

  32. Abney M, Ober C, McPeek MS: Quantitative trait homozygosity and association mapping and empirical genome-wide significance in large complex pedigrees: fasting serum insulin level in the Hutterites. Am J Hum Genet 2002, 70:920–934.

    Article  PubMed  CAS  Google Scholar 

  33. Kurina LM, Weiss LA, Graves SW, et al.: Sex differences in the genetic basis of morning serum cortisol levels: genome-wide screen identifies two novel loci specific to women. J Clin Endocrinol Metab 2005, 90:4747–4752.

    Article  PubMed  CAS  Google Scholar 

  34. Newman DL, Abney M, Dytch H, et al.: Major loci influencing serum triglyceride levels on 2q14 and 9p21 localized by homozygosity-by-descent mapping in a large Hutterite pedigree. Hum Mol Genet 2003, 12:137–144.

    Article  PubMed  CAS  Google Scholar 

  35. Weiss LA, Veenstra-Vanderweele J, Newman DL, et al.: Genomewide association study identifies ITGB3 as a QTL for whole blood serotonin. Eur J Hum Genet 2004, 12:949–954.

    Article  PubMed  CAS  Google Scholar 

  36. Weiss LA, Abney M, Cook EH Jr, Ober C: Sex-specific genetic architecture of whole blood serotonin levels. Am J Hum Genet 2005, 76:33–41.

    Article  PubMed  CAS  Google Scholar 

  37. Weiss LA, Pan L, Abney M, Ober C: The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 2006, 38:218–222. The first demonstration of extensive sex-specific genetic architecture and genotype-sex interactions for a spectrum of human quantitative traits.

    Article  PubMed  CAS  Google Scholar 

  38. Abney M, McPeek MS, Ober C: Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet 2000, 66:629–650.

    Article  PubMed  CAS  Google Scholar 

  39. Postma DS, Meyers DA, Jongepier H, et al.: Genomewide screen for pulmonary function in 200 families ascertained for asthma. Am J Respir Crit Care Med 2005, 172:446–452.

    Article  PubMed  Google Scholar 

  40. Choudhry S, Avila PC, Nazario S, et al.: CD14 tobacco gene-environment interaction modifies asthma severity and immunoglobulin E levels in Latinos with asthma. Am J Respir Crit Care Med 2005, 172:173–182.

    Article  PubMed  Google Scholar 

  41. Colilla S, Nicolae D, Pluzhnikov A, et al.: Evidence for geneenvironment interactions in a linkage study of asthma and smoking exposure. J Allergy Clin Immunol 2003, 111:840–846.

    Article  PubMed  Google Scholar 

  42. Hoffjan S, Nicolae D, Ostrovnaya I, et al.: Gene-environment interaction effects on the development of immune responses in the 1st year of life. Am J Hum Genet 2005, 76:696–704.

    Article  PubMed  CAS  Google Scholar 

  43. Eder W, Klimecki W, Yu L, et al.: Opposite effects of CD 14/-260 on serum IgE levels in children raised in different environments. J Allergy Clin Immunol 2005, 116:601–607.

    Article  PubMed  CAS  Google Scholar 

  44. Meyers DA, Postma DS, Stine OC, et al.: Genome screen for asthma and bronchial hyperresponsiveness: interactions with passive smoke exposure. J Allergy Clin Immunol 2005, 115:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  45. Werner M, Topp R, Wimmer K, et al.: TLR4 gene variants modify endotoxin effects on asthma. J Allergy Clin Immunol 2003, 112:323–330.

    Article  PubMed  CAS  Google Scholar 

  46. Zambelli-Weiner A, Ehrlich E, Stockton ML, et al.: Evaluation of the CD14/-260 polymorphism and house dust endotoxin exposure in the Barbados Asthma Genetics Study. J Allergy Clin Immunol 2005, 115:1203–1209.

    Article  PubMed  CAS  Google Scholar 

  47. Rinn JL, Snyder M: Sexual dimorphism in mammalian gene expression. Trends Genet 2005, 21:298–305. Review of evidence for sex-specific gene expression in mammals.

    Article  PubMed  CAS  Google Scholar 

  48. Kong A, Gudbjartsson DF, Sainz J, et al.: A high-resolution recombination map of the human genome. Nat Genet 2002, 31:241–247.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Ober PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ober, C., Pan, L., Phillips, N. et al. Sex-specific genetic architecture of asthma-associated quantitative trait loci in a founder population. Curr Allergy Asthma Rep 6, 241–246 (2006). https://doi.org/10.1007/s11882-006-0041-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-006-0041-4

Keywords

Navigation