Skip to main content
Log in

Potential roles in rhinitis for protease and other enzymatic activities of allergens

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Exposure to airborne pollen, fungal allergens, and dust mite allergens is associated with the development of allergic rhinitis. Biologic function of allergens is considered to be a key determinant for allergenicity, and many clinically important allergens have been shown to possess enzymatic activity. It is proposed that by enabling allergens to breach the integrity of the airway epithelial barrier, proteolytic activity plays an adjuvant pro-allergic role influencing immunogenicity. In this review, current evidence regarding enzymatic activity of aeroallergens is described, and the potential role of aeroallergens in allergic rhinitis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pomes A: Intrinsic properties of allergens and environmental exposure as determinants of allergenicity. Allergy 2002, 57:673–679.

    Article  PubMed  CAS  Google Scholar 

  2. Aalberse RC: Structural biology of allergens. J Allergy Clin Immunol 2000, 106:228–238.

    Article  PubMed  CAS  Google Scholar 

  3. Smith AM, Pomes A, Chapman MD: Molecular biology of indoor allergens. Clin Rev Allergy Immunol 2000, 18:265–283. This review summarizes the biologic function of diverse groups of a number of allergens and their potential role in allergenicity.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson PJ: Unique role of allergens and the epithelium in asthma. Clin Exp Allergy 1998, 28(Suppl 5):110–116.

    Article  PubMed  CAS  Google Scholar 

  5. Stewart GA, Robinson C: The immunobiology of allergenic peptidases. Clin Exp Allergy 2003, 33:3–6.

    Article  PubMed  CAS  Google Scholar 

  6. Wan H, Winton HL, Soeller C, et al.: Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1. Clin Exp Allergy 2000, 30:685–698. This study reveals the effect of proteolytically active Der p 1 on airway barrier function in vitro and links this to the development of atopic sensitization.

    Article  PubMed  CAS  Google Scholar 

  7. Hewitt CR, Foster S, Phillips C, et al.: Mite allergens: significance of enzymatic activity. Allergy 1998, 53:60–63.

    Article  PubMed  CAS  Google Scholar 

  8. Schulz O, Sewell HF, Shakib F: Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J Exp Med 1998, 187:271–275.

    Article  PubMed  CAS  Google Scholar 

  9. Ghaemmaghami AM, Gough L, Sewell HF, Shakib F: The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin Exp Allergy 2002, 32:1468–1475.

    Article  PubMed  CAS  Google Scholar 

  10. Gough L, Schulz O, Sewell HF, Shakib F: The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J Exp Med 1999, 190:1897–1902.

    Article  PubMed  CAS  Google Scholar 

  11. Nielsen GD, Hansen JS, Lund RM, et al.: IgE-mediated asthma and rhinitis I: A role of allergen exposure? Pharmacol Toxicol 2002, 90:231–242.

    Article  PubMed  CAS  Google Scholar 

  12. Raftery MJ, Saldanha RG, Geczy CL, Kumar RK: Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates. Respir Res 2003, 4:10. Proteolytic activity of pollen diffusates is described and proteomics employed to determine the identities of the pollen proteins.

    Article  PubMed  Google Scholar 

  13. Petersen A, Grobe K, Schramm G, et al.: Implications of the grass group I allergens on the sensitization and provocation process. Int Arch Allergy Immunol 1999, 118:411–413.

    Article  PubMed  CAS  Google Scholar 

  14. Grobe K, Becker WM, Schlaak M, Petersen A: Grass group I allergens (beta-expansins) are novel, papain-related proteinases. Eur J Biochem 1999, 263:33–40.

    Article  PubMed  CAS  Google Scholar 

  15. Li LC, Cosgrove DJ: Grass group I pollen allergens (betaexpansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur J Biochem 2001, 268:4217–4226.

    Article  PubMed  CAS  Google Scholar 

  16. Hassim Z, Maronese SE, Kumar RK: Injury to murine airway epithelial cells by pollen enzymes. Thorax 1998, 53:368–371.

    Article  PubMed  CAS  Google Scholar 

  17. Grobe K, Poppelmann M, Becker WM, Petersen A: Properties of group I allergens from grass pollen and their relation to cathepsin B, a member of the C1 family of cysteine proteinases. Eur J Biochem 2002, 269:2083–2092.

    Article  PubMed  CAS  Google Scholar 

  18. Widmer F, Hayes PJ, Whittaker RG, Kumar RK: Substrate preference profiles of proteases released by allergenic pollens. Clin Exp Allergy 2000, 30:571–576.

    Article  PubMed  CAS  Google Scholar 

  19. Bufe A, Betzel C, Schramm G, et al.: Crystallization and preliminary diffraction data of a major pollen allergen. Crystal growth separates a low molecular weight form with elevated biological activity. J Biol Chem 1996, 271:27193–27196.

    Article  PubMed  CAS  Google Scholar 

  20. Petersen A, Suck R, Hagen S, et al.: Group 13 grass allergens: structural variability between different grass species and analysis of proteolytic stability. J Allergy Clin Immunol 2001, 107:856–862.

    Article  PubMed  CAS  Google Scholar 

  21. Wan H, Winton HL, Soeller C, et al.: Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J 2000, 15:1058–1068.

    Article  PubMed  CAS  Google Scholar 

  22. Kurup VP, Shen HD, Banerjee B: Respiratory fungal allergy. Microbes Infect 2000, 2:1101–1110.

    Article  PubMed  CAS  Google Scholar 

  23. Bush RK, Portnoy JM: The role and abatement of fungal allergens in allergic diseases. J Allergy Clin Immunol 2001, 107:S430-S440.

    Article  PubMed  CAS  Google Scholar 

  24. Kauffman HF, Tomee JF, van de Riet MA, et al.: Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 2000, 105:1185–1193. This study analyzes the proteolytic activity of fungal extracts and describes its effect on barrier function and cytokine production by nasal epithelial cells.

    Article  PubMed  CAS  Google Scholar 

  25. Devalia JL, Sapsford RJ, Wells CW, et al.: Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir Med 1990, 84:303–312.

    PubMed  CAS  Google Scholar 

  26. Thomas WR, Smith WA, Hales BJ, et al.: Characterization and immunobiology of house dust mite allergens. Int Arch Allergy Immunol 2002, 129:1–18.

    Article  PubMed  CAS  Google Scholar 

  27. Herbert CA, King CM, Ring PC, et al.: Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Cell Mol Biol 1995, 12:369–378.

    PubMed  CAS  Google Scholar 

  28. Tomee JF, van Weissenbruch R, de Monchy JG, Kauffman HF: Interactions between inhalant allergen extracts and airway epithelial cells: effect on cytokine production and cell detachment. J Allergy Clin Immunol 1998, 102:75–85.

    Article  PubMed  CAS  Google Scholar 

  29. Winton HL, Wan H, Cannell MB, et al.: Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Br J Pharmacol 1998, 124:1048–1059.

    Article  PubMed  CAS  Google Scholar 

  30. Gore RB, Hadi EA, Craven M, et al.: Personal exposure to house dust mite allergen in bed: nasal air sampling and reservoir allergen levels. Clin Exp Allergy 2002, 32:856–859.

    Article  PubMed  CAS  Google Scholar 

  31. Roche N, Chinet TC, Belouchi NE, et al.: Dermatophagoides pteronyssinus and bioelectric properties of airway epithelium: role of cysteine proteases. Eur Respir J 2000, 16:309–315.

    Article  PubMed  CAS  Google Scholar 

  32. Wan H, Winton HL, Soeller C, et al.: Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999, 104:123–133.

    Article  PubMed  CAS  Google Scholar 

  33. Wan H, Winton HL, Soeller C, et al.: The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001, 31:279–294.

    Article  PubMed  CAS  Google Scholar 

  34. Stevenson BR, Anderson JM, Goodenough DA, Mooseker MS: Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol 1988, 107:2401–2408.

    Article  PubMed  CAS  Google Scholar 

  35. Robinson C, Kalsheker NA, Srinivasan N, et al.: On the potential significance of the enzymatic activity of mite allergens to immunogenicity. Clues to structure and function revealed by molecular characterization. Clin Exp Allergy 1997, 27:10–21.

    Article  PubMed  CAS  Google Scholar 

  36. Winton HL, Wan H, Cannell MB, et al.: Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy 1998, 28:1273–1285.

    Article  PubMed  CAS  Google Scholar 

  37. Corren J: The impact of allergic rhinitis on bronchial asthma. J Allergy Clin Immunol 1998, 101:S352-S356.

    Article  PubMed  CAS  Google Scholar 

  38. Ciprandi G, Cirillo I, Tosca MA, Vizzaccaro A: Bronchial hyperreactivity and spirometric impairment in polysensitized patients with allergic rhinitis. Clin Mol Allergy 2004, 2:3.

    Article  PubMed  Google Scholar 

  39. Downie SR, Andersson M, Rimmer J, et al.: Association between nasal and bronchial symptoms in subjects with persistent allergic rhinitis. Allergy 2004, 59:320–326.

    Article  PubMed  CAS  Google Scholar 

  40. Greiff L, Andersson M, Svensson J, et al.: Absorption across the nasal airway mucosa in house dust mite perennial allergic rhinitis. Clin Physiol Funct Imaging 2002, 22:55–57.

    Article  PubMed  Google Scholar 

  41. Hewitt CR, Brown AP, Hart BJ, Pritchard DI: A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med 1995, 182:1537–1544.

    Article  PubMed  CAS  Google Scholar 

  42. Sporik R, Platts-Mills TA: Allergen exposure and the development of asthma. Thorax 2001, 56(Suppl 2):ii58-ii63.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sehgal, N., Custovic, A. & Woodcock, A. Potential roles in rhinitis for protease and other enzymatic activities of allergens. Curr Allergy Asthma Rep 5, 221–226 (2005). https://doi.org/10.1007/s11882-005-0041-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-005-0041-9

Keywords

Navigation