Skip to main content
Log in

White blood cell defects: Molecular discoveries and clinical management

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

In this review, we present the most recent discoveries at the molecular level in white blood cell defects, and explain how their identification helped us to understand the underlying pathophysiology and directed our approach in clinical management. These lately discovered genes, relevant to immune disorders of mononuclear phagocytes and neutrophils, include defects in the interferon gamma (IFNã)/interleukin 12 (IL-12) pathway, such as IFNã receptor (IFNãR) defects, IL-12 defect, IL-12 receptor (IL-12R) defect, and signal transducer and activator of transcription 1 (STAT-1) defect. We have also included NF-kappaB essential modifier (NEMO) defects, which lead to X-linked ectodermal dysplasia, with or without lymphedema and osteopetrosis, and a wide range of involvement of the immune system, which can mimic the hyper-IgM phenotype. Neutrophil-specific granule deficiency and neutrophil elastase deficiency are discussed, the latter being the molecular defect in both cyclic neutropenia and in some sporadic cases of severe congenital neutropenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Altare F, Jouanguy E, Lamhamedi-Cherradi S, et al.: A causative relationship between mutant IFNgR1 alleles and impaired cellular response to IFNgamma in a compound heterozygous child [Letter]. Am J Hum Genet 1998, 62:723–726.

    Article  PubMed  CAS  Google Scholar 

  2. Holland SM, Dorman SE, Kwon A, et al.: Abnormal regulation of interferon-gamma, interleukin-12, and tumor necrosis factor-alpha in human interferon-gamma receptor 1 deficiency. J Infect Dis 1998, 178:1095–1104.

    PubMed  CAS  Google Scholar 

  3. Newport MJ, Huxley CM, Huston S, et al.: A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996, 335:1941–1949. This is one of the first reports linking susceptibility to mycobacterial infections to mutations in IFNãR1.

    Article  PubMed  CAS  Google Scholar 

  4. Jouanguy E, Altare F, Lamhamedi S, et al.: Interferon-gammareceptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med 1996, 335:1956–1961. This is one of the first reports linking susceptibility to mycobacterial infections to mutations in IFNãR1.

    Article  PubMed  CAS  Google Scholar 

  5. Lamhamedi S, Jouanguy E, Altare F, et al.: Interferon-gamma receptor deficiency: relationship between genotype, environment, and phenotype [Review]. Int J Mol Med 1998, 1:415–418.

    PubMed  CAS  Google Scholar 

  6. Altare F, Jouanguy E, Lamhamedi S, et al.: Mendelian susceptibility to mycobacterial infection in man. Curr Opin Immunol 1998, 10:413–417.

    Article  PubMed  CAS  Google Scholar 

  7. Roesler J, Kofink B, Wendisch J, et al.: Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-gamma-receptor (IFNgammaR1) deficiency: mutational analysis and evaluation of therapeutic options. Exp Hematol 1999, 27:1368–1374.

    Article  PubMed  CAS  Google Scholar 

  8. Dorman SE, Uzel G, Roesler J, et al.: Viral infections in interferon-gamma receptor deficiency [Comments]. J Pediatr 1999, 135:640–643.

    Article  PubMed  CAS  Google Scholar 

  9. Flesch IE, Hess JH, Huang S, et al.: Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J Exp Med 1995, 181:1615–1621.

    Article  PubMed  CAS  Google Scholar 

  10. Darnell JE Jr., Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264:1415–1421.

    Article  PubMed  CAS  Google Scholar 

  11. Shuai K, Schindler C, Prezioso VR, Darnell JE Jr.: Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 1992, 258:1808–1812.

    Article  PubMed  CAS  Google Scholar 

  12. Shuai K, Stark GR, Kerr IM, Darnell JE, Jr.: A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma [Comments]. Science 1993, 261:1744–1746.

    Article  PubMed  CAS  Google Scholar 

  13. Gan H, Newman G, McCarthy PL, Remold HG: TNF-alpha response of human monocyte-derived macrophages to Mycobacterium avium, serovar 4, is of brief duration and protein kinase C dependent. J Immunol 1993, 150:2892–2900.

    PubMed  CAS  Google Scholar 

  14. Jouanguy E, Dupuis S, Pallier A, et al.: In a novel form of IFN-gamma receptor 1 deficiency, cell surface receptors fail to bind IFN-gamma. J Clin Invest 2000, 105:1429–1436.

    PubMed  CAS  Google Scholar 

  15. Dorman SE, Holland SM: Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 1998, 101:2364–2369. This is the first report linking susceptibility to mycobacterial infections to mutations in IFNãR2.

    Article  PubMed  CAS  Google Scholar 

  16. Casanova JL, Ochs H: Interferon-gamma receptor deficiency: An expanding clinical phenotype? J Pediatr 1999, 135:543–545.

    Article  PubMed  CAS  Google Scholar 

  17. Fleisher TA, Dorman SE, Anderson JA, et al.: Detection of intracellular phosphorylated STAT-1 by flow cytometry. Clin Immunol 1999, 90:425–430.

    Article  PubMed  CAS  Google Scholar 

  18. Jouanguy E, Lamhamedi-Cherradi S, et al.: Partial interferongamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest 1997, 100:2658–2664.

    PubMed  CAS  Google Scholar 

  19. Doffinger R, Jouanguy E, Dupuis S, et al.: Partial interferongamma receptor signaling chain deficiency in a patient with bacille Calmette-Guérin and Mycobacterium abscessus infection. J Infect Dis 2000, 181:379–384.

    Article  PubMed  CAS  Google Scholar 

  20. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, et al.: A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection [Comments]. Nat Genet 1999, 21:370–378. This report describes18 patients from several generations of 12 unrelated families who are heterozygous for a IFNGR1 frameshift deletion at the same site, defining a small deletion hotspot that confers dominant susceptibility to infections caused by mycobacteria.

    Article  PubMed  CAS  Google Scholar 

  21. Foote S: Mediating immunity to mycobacteria [news; comment]. Nat Genet 1999, 21:345–346.

    Article  PubMed  CAS  Google Scholar 

  22. Levin M, Newport M: Understanding the genetic basis of susceptibility to mycobacterial infection. Proc Assoc Am Physicians 1999, 111:308–312.

    Article  PubMed  CAS  Google Scholar 

  23. Ottenhoff TH, Kumararatne D, Casanova JL: Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol Today 1998, 19:491–494.

    Article  PubMed  CAS  Google Scholar 

  24. de Jong R, Altare F, Haagen IA, et al.: Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 1998, 280:1435–1438. One of the first reports of interleukin-12 receptor-deficiency as the cause of severe mycobacterial and Salmonella infections in humans.

    Article  PubMed  Google Scholar 

  25. Altare F, Durandy A, Lammas D, et al.: Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998, 280:1432–1435. One of the first reports of interleukin-12 receptor-deficiency as the cause of severe mycobacterial and Salmonella infections in humans.

    Article  PubMed  CAS  Google Scholar 

  26. Uzel G, Frucht DM, Fleisher TA, Holland SM: Detection of intracellular phosphorylated STAT-4 by flow cytometry. Clin Immunol 2001, 100:270–276.

    Article  PubMed  CAS  Google Scholar 

  27. Altare F, Lammas D, Revy P, et al.: Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J Clin Invest 1998, 102:2035–2040. This paper reports the first case of a genetic defect in IL-12p40. It gives a cellular, histopathologic, and clinical description of this deficiency.

    PubMed  CAS  Google Scholar 

  28. Picard C, Fieschi C, Altare F, et al.: Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 2002, 70:336–348.

    Article  PubMed  CAS  Google Scholar 

  29. Dupuis S, Dargemont C, Fieschi C, et al.: Impairment of mycobacterial but not viral immunity by a germline human STAT-1 mutation. Science 2001, 293:300–303. This is the first report of a dominant germline STAT-1 mutation associated with susceptibility to mycobacterial infections. Importantly, viral infections do not appear to be increased.

    Article  PubMed  CAS  Google Scholar 

  30. Jain A, Ma CA, Liu S, et al.: Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001, 2:223–228. The immunologic effects of mutations in NEMO are linked to the clinical phenotype of ectodermal dysplasia with humoral immunodeficiency due to abnormal immunoglobulin class switching.

    Article  PubMed  CAS  Google Scholar 

  31. Doffinger R, Smahi A, Bessia C, et al.: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001, 27:277–285. A large collection of patients who have mutations in NEMO with ectodermal dysplasia and immunodeficiency, highlighting the genotype-phenotype correlations, and the broad spectrum of susceptibility to infectious agents.

    Article  PubMed  CAS  Google Scholar 

  32. Kere J, Srivastava AK, Montonen O, et al.: X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. [Comments]. Nat Genet 1996, 13:409–416.

    Article  PubMed  CAS  Google Scholar 

  33. Monreal AW, Ferguson BM, Headon DJ, et al.: Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. [Comments]. Nat Genet 1999, 22:366–369.

    Article  PubMed  CAS  Google Scholar 

  34. Komiyama A, Morosawa H, Nakahata T, et al.: Abnormal neutrophil maturation in a neutrophil defect with morphologic abnormality and impaired function. J Pediatr 1979, 94:19–25.

    Article  PubMed  CAS  Google Scholar 

  35. Breton-Gorius J, Mason DY, Buriot D, et al.: Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy. Am J Pathol 1980, 99:413–428.

    PubMed  CAS  Google Scholar 

  36. Boxer LA, Coates TD, Haak RA, et al.: Lactoferrin deficiency associated with altered granulocyte function. N Engl J Med 1982, 307:404–410.

    Article  PubMed  CAS  Google Scholar 

  37. Ambruso DR, Sasada M, Nishiyama H, et al.: Defective bactericidal activity and absence of specific granules in neutrophils from a patient with recurrent bacterial infections. J Clin Immunol 1984, 4:23–30.

    Article  PubMed  CAS  Google Scholar 

  38. Gallin JI, Fletcher MP, Seligmann BE, et al.: Human neutrophilspecific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood 1982, 59:1317–1329.

    PubMed  CAS  Google Scholar 

  39. Borregaard N, Boxer LA, Smolen JE, Tauber AI: Anomalous neutrophil granule distribution in a patient with lactoferrin deficiency: pertinence to the respiratory burst. Am J Hematol 1985, 18:255–260.

    Article  PubMed  CAS  Google Scholar 

  40. Ganz T, Metcalf JA, Gallin JI, et al.: Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest 1988, 82: 552–556.

    PubMed  CAS  Google Scholar 

  41. Tamura A, Agematsu K, Mori T, et al.: A marked decrease in defensin mRNA in the only case of congenital neutrophilspecific granule deficiency reported in Japan. Int J Hematol 1994, 59:137–142.

    PubMed  CAS  Google Scholar 

  42. Lomax KJ, Malech HL, Gallin JI: The molecular biology of selected phagocyte defects. Blood Rev 1989, 3:94–104.

    Article  PubMed  CAS  Google Scholar 

  43. Sakura T, Murakami H, Matsushima T, et al.: Ultrastructure of neutrophilic phagosome of autologous platelet in vivo in specific granule deficiency. Am J Hematol 1993, 43:149–150.

    Article  PubMed  CAS  Google Scholar 

  44. Rosenberg HF, Gallin JI: Neutrophil-specific granule deficiency includes eosinophils. Blood 1993, 82:268–273.

    PubMed  CAS  Google Scholar 

  45. Parker RI, McKeown LP, Gallin JI, Gralnick HR: Absence of the largest platelet-von Willebrand multimers in a patient with lactoferrin deficiency and a bleeding tendency. Thromb Haemost 1992, 67:320–324.

    PubMed  CAS  Google Scholar 

  46. Lomax KJ, Gallin JI, Rotrosen D, et al.: Selective defect in myeloid cell lactoferrin gene expression in neutrophil specific granule deficiency. J Clin Invest 1989, 83:514–519.

    PubMed  CAS  Google Scholar 

  47. Williams SC, Cantwell CA, Johnson PF: A family of C/EBPrelated proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev 1991, 5:1553–1567.

    PubMed  CAS  Google Scholar 

  48. Lekstrom-Himes JA, Dorman SE, Kopar P, et al.: Neutrophilspecific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/ enhancer binding protein epsilon. J Exp Med 1999, 189:1847–1852. The first report of an underlying molecular defect for neutrophilspecific granule deficiency. A 5bp deletion in the second exon of C/EBPå results in a truncation and abnormal myeloid maturation, including defects in granule synthesis.

    Article  PubMed  CAS  Google Scholar 

  49. Gombart AF, Shiohara M, Kwok SH, et al.: Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein—epsilon. Blood 2001, 97:2561–2567.

    Article  PubMed  CAS  Google Scholar 

  50. Aprikyan AA, Dale DC: Mutations in the neutrophil elastase gene in cyclic and congenital neutropenia. Curr Opin Immunol 2001, 13:535–538.

    Article  PubMed  CAS  Google Scholar 

  51. Bernini JC: Diagnosis and management of chronic neutropenia during childhood. Pediatr Clin North Am 1996, 43:773–792.

    Article  PubMed  CAS  Google Scholar 

  52. Haurie C, Dale DC, Mackey MC: Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models [Comments]. Blood 1998, 92:2629–2640.

    PubMed  CAS  Google Scholar 

  53. Kostmann R: Infantile genetic agranulocytosis. Acta Pediatr Scan 1956, 45:1–78.

    CAS  Google Scholar 

  54. Welte K, Dale D: Pathophysiology and treatment of severe chronic neutropenia. Ann Hematol 1996, 72:158–165.

    Article  PubMed  CAS  Google Scholar 

  55. Welte K, Boxer LA: Severe chronic neutropenia: pathophysiology and therapy. Semin Hematol 1997, 34:267–278.

    PubMed  CAS  Google Scholar 

  56. Horwitz M, Benson KF, Person RE, et al.: Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 1999, 23:433–436. Using genome-wide screening and positional cloning, the authors mapped cyclic neutropenia to neutrophil elastase (ELA2) on chromosome 19p13.3, and identified seven different single-base substitutions.

    Article  PubMed  CAS  Google Scholar 

  57. Dale DC, Person RE, Bolyard AA, et al.: Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. [Comments]. Blood 2000, 96:2317–2322. Neutrophil elastase (ELA2) mutations are identified as the genetic cause of congenital neutopenia as well as cyclic neutropenia.

    PubMed  CAS  Google Scholar 

  58. Palmer SE, Stephens K, Dale DC: Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis. Am J Med Genet 1996, 66:413–422.

    Article  PubMed  CAS  Google Scholar 

  59. Navia MA, McKeever BM, Springer JP, et al.: Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc Natl Acad Sci U S A 1989, 86:7–11.

    Article  PubMed  CAS  Google Scholar 

  60. Freedman MH, Bonilla MA, Fier C, et al.: Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood 2000, 96:429–436.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzel, G., Holland, S.M. White blood cell defects: Molecular discoveries and clinical management. Curr Allergy Asthma Rep 2, 385–391 (2002). https://doi.org/10.1007/s11882-002-0071-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-002-0071-5

Keywords

Navigation