Skip to main content

Advertisement

Log in

Mechanisms of eosinophil recruitment and activation

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The role of the eosinophil in the pathophysiology of allergy and asthma has been the focus of intense interest during the last two decades. While the presence of eosinophils in humans with allergy and asthma is well established, the precise role of this cell in humans and in animal models is less clear. However, recent developments in research on many organ systems have provided novel insights into the possible underlying role of the eosinophil in both allergic and nonallergic inflammation. This review examines the pathways associated with eosinophil recruitment and activation and discusses these findings, with reference to clinically defined categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Denburg JA, Sehmi R, Saito H, et al.: Systemic aspects of allergic disease: bone marrow responses. J Allergy Clin Immunol 2000, 106:S242-S246.

    Article  PubMed  CAS  Google Scholar 

  2. Sutherland DR, Stewart AK, Keating A: CD34 antigen: molecular features and potential clinical applications. Stem Cells 1993, 11:50–57.

    Article  PubMed  Google Scholar 

  3. Sehmi R, Howie K, Sutherland DR, et al.: Increased levels of CD34+ hemopoietic progenitor cells in atopic subjects. Am J Respir Cell Mol Biol 1996, 15:645–655.

    PubMed  CAS  Google Scholar 

  4. Gibson PG, Manning PJ, O’Byrne PM, et al.: Allergen-induced asthmatic responses. Relationship between increases in airway responsiveness and increases in circulating eosinophils, basophils, and their progenitors. Am Rev Respir Dis 1991, 143:331–335.

    PubMed  CAS  Google Scholar 

  5. Gauvreau GM, Wood LJ, Sehmi R, et al.: The effects of inhaled budesonide on circulating eosinophil progenitors and their expression of cytokines after allergen challenge in subjects with atopic asthma. Am J Respir Crit Care Med 2000, 162:2139–2144.

    PubMed  CAS  Google Scholar 

  6. Denburg JA: Bone marrow in atopy and asthma: hematopoietic mechanisms in allergic inflammation. Immunol Today 1999, 20:111–113.

    Article  PubMed  CAS  Google Scholar 

  7. Foster PS: Allergic networks regulating eosinophilia. Am J Respir Cell Mol Biol 1999, 21:451–454.

    PubMed  CAS  Google Scholar 

  8. Yamaguchi Y, Hayashi Y, Sugama Y, et al.: Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 1988, 167:1737–1742.

    Article  PubMed  CAS  Google Scholar 

  9. Clutterbuck EJ, Hirst EM, Sanderson CJ: Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 1989, 73:1504–1512.

    PubMed  CAS  Google Scholar 

  10. Rothenberg ME, Owen WF Jr, Silberstein DS, et al.: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J Clin Invest 1988, 81:1986–1992.

    PubMed  CAS  Google Scholar 

  11. Hamelmann E, Gelfand EW: IL-5-induced airway eosinophilia—the key to asthma? Immunol Rev 2001, 179:182–191.

    Article  PubMed  CAS  Google Scholar 

  12. Gauvreau GM, O’Byrne PM, Moqbel R, et al.: Enhanced expression of GM-CSF in differentiating eosinophils of atopic and atopic asthmatic subjects. Am J Respir Cell Mol Biol 1998, 19:55–62.

    PubMed  CAS  Google Scholar 

  13. Mishra A, Hogan SP, Lee JJ, et al.: Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 1999, 103:1719–1727.

    PubMed  CAS  Google Scholar 

  14. Mahmudi-Azer S, Velazquez JR, Lacy P, et al.: Immunofluorescence analysis of cytokine and granule protein expression during eosinophil maturation from cord blood-derived CD34 progenitors. J Allergy Clin Immunol 2000, 105:1178–1184.

    Article  PubMed  CAS  Google Scholar 

  15. Velazquez JR, Lacy P, Mahmudi-Azer S, et al.: Interleukin-4 and RANTES expression in maturing eosinophils derived from human cord blood CD34+ progenitors. Immunology 2000, 101:419–425.

    Article  PubMed  CAS  Google Scholar 

  16. Lacy P, Moqbel R: Eosinophil cytokines. Chem Immunol 2000, 76:134–155.

    PubMed  CAS  Google Scholar 

  17. Foster PS, Mould AW, Yang M, et al.: Elemental signals regulating eosinophil accumulation in the lung. Immunol Rev 2001, 179:173–181.

    Article  PubMed  CAS  Google Scholar 

  18. Cameron L, Christodoulopoulos P, Lavigne F, et al.: Evidence for local eosinophil differentiation within allergic nasal mucosa: inhibition with soluble IL-5 receptor. J Immunol 2000, 164:1538–1545. This elegant study was the first to show that explants of human allergic tissue outside of the bone marrow could not only respond to allergen ex vivo, but also that eosinophil progenitor cells present in the explants could mature to the point of responding to allergic stimulation with evidence of increased MBP expression.

    PubMed  CAS  Google Scholar 

  19. Eidelman DH, Minshall E, Dandurand RJ, et al.: Evidence for major basic protein immunoreactivity and interleukin 5 gene activation during the late phase response in explanted airways. Am J Respir Cell Mol Biol 1996, 15:582–589.

    PubMed  CAS  Google Scholar 

  20. Simon HU, Yousefi S, Schranz C, et al.: Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol 1997, 158:3902–3908.

    PubMed  CAS  Google Scholar 

  21. Pazdrak K, Olszewska-Pazdrak B, Stafford S, et al.: Lyn, Jak2, and Raf-1 kinases are critical for the antiapoptotic effect of interleukin 5, whereas only Raf-1 kinase is essential for eosinophil activation and degranulation. J Exp Med 1998, 188:421–429.

    Article  PubMed  CAS  Google Scholar 

  22. Wardlaw AJ, Brightling C, Green R, et al.: Eosinophils in asthma and other allergic diseases. Br Med Bull 2000, 56:985–1003.

    Article  PubMed  CAS  Google Scholar 

  23. Anwar AR, Moqbel R, Walsh GM, et al.: Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 1993, 177:839–843.

    Article  PubMed  CAS  Google Scholar 

  24. Bochner BS, Schleimer RP: Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 2001, 179:5–15.

    Article  PubMed  CAS  Google Scholar 

  25. Rothenberg ME: Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues. Am J Respir Cell Mol Biol 1999, 21:291–295.

    PubMed  CAS  Google Scholar 

  26. Rothenberg ME, Mishra A, Brandt EB, Hogan SP: Gastrointestinal eosinophils. Immunol Rev 2001, 179:139–155.

    Article  PubMed  CAS  Google Scholar 

  27. Zimmermann N, Hogan SP, Mishra A, et al.: Murine eotaxin-2: a constitutive eosinophil chemokine induced by allergen challenge and IL-4 overexpression. J Immunol 2000, 165:5839–5846.

    PubMed  CAS  Google Scholar 

  28. Rothenberg ME, Luster AD, Lilly CM, et al.: Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung. J Exp Med 1995, 181:1211–1216.

    Article  PubMed  CAS  Google Scholar 

  29. Collins PD, Marleau S, Griffiths-Johnson DA, et al.: Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 1995, 182:1169–1174.

    Article  PubMed  CAS  Google Scholar 

  30. Mould AW, Ramsay AJ, Matthaei KI, et al.: The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J Immunol 2000, 164:2142–2150. This study demonstrated that eosinophil degranulation is a critical parameter in induction of AHR in a mouse model of asthma. By overexpressing eotaxin and IL-5 in the lung, the authors were able to show that tissue eosinophil presence did not induce responses and tissue damage unless cells were also activated to degranulate.

    PubMed  CAS  Google Scholar 

  31. Matthews AN, Friend DS, Zimmermann N, et al.: Eotaxin is required for the baseline level of tissue eosinophils. Proc Natl Acad Sci U S A 1998, 95:6273–6278.

    Article  PubMed  CAS  Google Scholar 

  32. Gonzalo JA, Lloyd CM, Wen D, et al.: The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J Exp Med 1998, 188:157–167. A detailed study examining CCR3 chemokines in relation to the timing of their effects on eosinophil migration and eosinophil-mediated AHR.

    Article  PubMed  CAS  Google Scholar 

  33. Broide D, Sriramarao P: Eosinophil trafficking to sites of allergic inflammation. Immunol Rev 2001, 179:163–172.

    Article  PubMed  CAS  Google Scholar 

  34. Schall TJ: Biology of the RANTES/SIS cytokine family. Cytokine 1991, 3:165–183.

    Article  PubMed  CAS  Google Scholar 

  35. Kaburagi Y, Shimada Y, Nagaoka T, et al.: Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1a, MIP-1b, and eotaxin) in patients with atopic dermatitis. Arch Dermatol Res 2001, 293:350–355.

    Article  PubMed  CAS  Google Scholar 

  36. Noah TL, Becker S: Chemokines in nasal secretions of normal adults experimentally infected with respiratory syncytial virus. Clin Immunol 2000, 97:43–49.

    Article  PubMed  CAS  Google Scholar 

  37. Harrison AM, Bonville CA, Rosenberg HF, Domachowske JB: Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation. Am J Respir Crit Care Med 1999, 159:1918–1924.

    PubMed  CAS  Google Scholar 

  38. Teran LM, Seminario MC, Shute JK, et al.: RANTES, macrophage-inhibitory protein 1 a, and the eosinophil product major basic protein are released into upper respiratory secretions during virus-induced asthma exacerbations in children. J Infect Dis 1999, 179:677–681.

    Article  PubMed  CAS  Google Scholar 

  39. Bochner BS, Luscinskas FW, Gimbrone MA Jr, et al.: Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med 1991, 173:1553–1557.

    Article  PubMed  CAS  Google Scholar 

  40. Webb DC, McKenzie AN, Koskinen AM, et al.: Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol 2000, 165:108–113.

    PubMed  CAS  Google Scholar 

  41. Grunig G, Warnock M, Wakil AE, et al.: Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998, 282:2261–2263.

    Article  PubMed  CAS  Google Scholar 

  42. Wills-Karp M, Luyimbazi J, Xu X, et al.: Interleukin-13: central mediator of allergic asthma. Science 1998, 282:2258–2261.

    Article  PubMed  CAS  Google Scholar 

  43. Bochner BS, Klunk DA, Sterbinsky SA, et al.: IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J Immunol 1995, 154:799–803.

    PubMed  CAS  Google Scholar 

  44. Woltmann G, McNulty CA, Dewson G, et al.: Interleukin-13 induces PSGL-1/P-selectin-dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. Blood 2000, 95:3146–3152.

    PubMed  CAS  Google Scholar 

  45. Kuperman D, Schofield B, Wills-Karp M, Grusby MJ: Signal transducer and activator of transcription factor 6 (STAT6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 1998, 187:939–948.

    Article  PubMed  CAS  Google Scholar 

  46. Akimoto T, Numata F, Tamura M, et al.: Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med 1998, 187:1537–1542.

    Article  PubMed  CAS  Google Scholar 

  47. Matsukura S, Stellato C, Georas SN, et al.: Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a STAT6-dependent mechanism. Am J Respir Cell Mol Biol 2001, 24:755–761.

    PubMed  CAS  Google Scholar 

  48. Matsumoto K, Sterbinsky SA, Bickel CA, et al.: Regulation of a4 integrin-mediated adhesion of human eosinophils to fibronectin and vascular cell adhesion molecule-1. J Allergy Clin Immunol 1997, 99:648–656.

    Article  PubMed  CAS  Google Scholar 

  49. Weber C, Katayama J, Springer TA: Differential regulation of b1 and b2 integrin avidity by chemoattractants in eosinophils. Proc Natl Acad Sci U S A 1996, 93:10939–10944.

    Article  PubMed  CAS  Google Scholar 

  50. Ebisawa M, Bochner BS, Georas SN, Schleimer RP: Eosinophil transendothelial migration induced by cytokines. I. Role of endothelial and eosinophil adhesion molecules in IL-1binduced transendothelial migration. J Immunol 1992, 149:4021–4028.

    PubMed  CAS  Google Scholar 

  51. Shahabuddin S, Ponath P, Schleimer RP: Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines. J Immunol 2000, 164:3847–3854. The authors examined a wide range of cytokines and chemokines thought to be important in migration of eosinophils across endothelial layers. Their results demonstrated a priority of potency of chemokines, as well as the relationship of IL-1, TNF, IL-5, and GM-CSF effects to that of the chemokines studied.

    PubMed  CAS  Google Scholar 

  52. Georas SN, Liu MC, Newman W, et al.: Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol 1992, 7:261–269.

    PubMed  CAS  Google Scholar 

  53. Rothenberg ME, MacLean JA, Pearlman E, et al.: Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 1997, 185:785–790.

    Article  PubMed  CAS  Google Scholar 

  54. Kuijpers TW, Mul EP, Blom M, et al.: Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J Exp Med 1993, 178:279–284.

    Article  PubMed  CAS  Google Scholar 

  55. Ebisawa M, Liu MC, Yamada T, et al.: Eosinophil transendothelial migration induced by cytokines. II. Potentiation of eosinophil transendothelial migration by eosinophil-active cytokines. J Immunol 1994, 152:4590–4596.

    PubMed  CAS  Google Scholar 

  56. Werfel SJ, Yednock TA, Matsumoto K, et al.: Functional regulation of b1 integrins on human eosinophils by divalent cations and cytokines. Am J Respir Cell Mol Biol 1996, 14:44–52.

    PubMed  CAS  Google Scholar 

  57. Tachimoto H, Burdick MM, Hudson SA, et al.: CCR3-active chemokines promote rapid detachment of eosinophils from VCAM-1 in vitro. J Immunol 2000, 165:2748–2754.

    PubMed  CAS  Google Scholar 

  58. DiScipio RG, Daffern PJ, Jagels MA, et al.: A comparison of C3a and C5a-mediated stable adhesion of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo. J Immunol 1999, 162:1127–1136.

    PubMed  CAS  Google Scholar 

  59. Broide DH, Lotz M, Cuomo AJ, et al.: Cytokines in symptomatic asthma airways. J Allergy Clin Immunol 1992, 89:958–967.

    Article  PubMed  CAS  Google Scholar 

  60. Bochner BS, Charlesworth EN, Lichtenstein LM, et al.: Interleukin-1 is released at sites of human cutaneous allergic reactions. J Allergy Clin Immunol 1990, 86:830–839.

    Article  PubMed  CAS  Google Scholar 

  61. Hirata N, Kohrogi H, Iwagoe H, et al.: Allergen exposure induces the expression of endothelial adhesion molecules in passively sensitized human bronchus: time course and the role of cytokines. Am J Respir Cell Mol Biol 1998, 18:12–20.

    PubMed  CAS  Google Scholar 

  62. Broide DH, Campbell K, Gifford T, Sriramarao P: Inhibition of eosinophilic inflammation in allergen-challenged, IL-1 receptor type 1-deficient mice is associated with reduced eosinophil rolling and adhesion on vascular endothelium. Blood 2000, 95:263–269. In this elegant study, an IL-1 receptor knockout mouse was used together with videomicroscopy to demonstrate that IL-1 has an important role in inducing eosinophil migration during allergen challenge.

    PubMed  CAS  Google Scholar 

  63. Walsh LJ, Trinchieri G, Waldorf HA, et al.: Human dermal mast cells contain and release tumor necrosis factor a, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci U S A 1991, 88:4220–4224.

    Article  PubMed  CAS  Google Scholar 

  64. Mackay F, Loetscher H, Stueber D, et al.: Tumor necrosis factor a(TNF-a)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J Exp Med 1993, 177:1277–1286.

    Article  PubMed  CAS  Google Scholar 

  65. Neumann B, Machleidt T, Lifka A, et al.: Crucial role of 55-kilodalton TNF receptor in TNF-induced adhesion molecule expression and leukocyte organ infiltration. J Immunol 1996, 156:1587–1593.

    PubMed  CAS  Google Scholar 

  66. Broide DH, Stachnick G, Castaneda D, et al.: Inhibition of eosinophilic inflammation in allergen-challenged TNF receptor p55/p75- and TNF receptor p55-deficient mice. Am J Respir Cell Mol Biol 2001, 24:304–311. An important demonstration of a previously unknown function of TNF in activation of eosinophil migration during allergen challenge of TNF receptor knockout mice.

    PubMed  CAS  Google Scholar 

  67. Masumoto A, Hemler ME: Multiple activation states of VLA-4. Mechanistic differences between adhesion to CS1/fibronectin and to vascular cell adhesion molecule-1. J Biol Chem 1993, 268:228–234.

    PubMed  CAS  Google Scholar 

  68. Sung KL, Li Y, Elices M, et al.: Granulocyte-macrophage colony-stimulating factor regulates the functional adhesive state of very late antigen-4 expressed by eosinophils. J Immunol 1997, 158:919–927.

    PubMed  CAS  Google Scholar 

  69. Kitayama J, Mackay CR, Ponath PD, Springer TA: The C-C chemokine receptor CCR3 participates in stimulation of eosinophil arrest on inflammatory endothelium in shear flow. J Clin Invest 1998, 101:2017–2024.

    PubMed  CAS  Google Scholar 

  70. Hogan SP, Koskinen A, Matthaei KI, et al.: Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergeninduced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am J Respir Crit Care Med 1998, 157:210–218.

    PubMed  CAS  Google Scholar 

  71. Hogan SP, Mishra A, Brandt EB, et al.: A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat Immunol 2001, 2:353–360.

    Article  PubMed  CAS  Google Scholar 

  72. Mould AW, Matthaei KI, Young IG, Foster PS: Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 1997, 99:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  73. Adamko DJ, Yost BL, Gleich GJ, et al.: Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, M2 muscarinic receptor dysfunction, and antiviral effects. J Exp Med 1999, 190:1465–1478. In this study, the authors showed that, similar to virus-induced asthma exacerbations, sensitizing an animal before virus infection switched the immune response and development of virus-induced AHR to an eosinophil-mediated pathway, as well as suggesting a novel antiviral role for eosinophils.

    Article  PubMed  CAS  Google Scholar 

  74. Evans CM, Fryer AD, Jacoby DB, et al.: Pretreatment with antibody to eosinophil major basic protein prevents hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs. J Clin Invest 1997, 100:2254–2262.

    PubMed  CAS  Google Scholar 

  75. Costello RW, Evans CM, Yost BL, et al.: Antigen-induced hyperreactivity to histamine: role of the vagus nerves and eosinophils. Am J Physiol 1999, 276:L709-L714.

    PubMed  CAS  Google Scholar 

  76. Kirby JG, Hargreave FE, Gleich GJ, O’Byrne PM: Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects. Am Rev Respir Dis 1987, 136:379–383.

    PubMed  CAS  Google Scholar 

  77. Bousquet J, Chanez P, Lacoste JY, et al.: Eosinophilic inflammation in asthma. N Engl J Med 1990, 323:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  78. Frigas E, Loegering DA, Solley GO, et al.: Elevated levels of the eosinophil granule major basic protein in the sputum of patients with bronchial asthma. Mayo Clin Proc 1981, 56:345–353.

    PubMed  CAS  Google Scholar 

  79. Wu W, Samoszuk MK, Comhair SA, et al.: Eosinophils generate brominating oxidants in allergen-induced asthma. J Clin Invest 2000, 105:1455–1463.

    PubMed  CAS  Google Scholar 

  80. Kelly EA, Busse WW, Jarjour NN: Inhaled budesonide decreases airway inflammatory response to allergen. Am J Respir Crit Care Med 2000, 162:883–890.

    PubMed  CAS  Google Scholar 

  81. Jacoby DB, Costello RM, Fryer AD: Eosinophil recruitment to the airway nerves. J Allergy Clin Immunol 2001, 107:211–218.

    Article  PubMed  CAS  Google Scholar 

  82. Dvorak AM, Weller PF: Ultrastructural analysis of human eosinophils. Chem Immunol 2000, 76:1–28.

    PubMed  CAS  Google Scholar 

  83. Erjefält JS, Greiff L, Andersson M, et al.: Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am J Respir Crit Care Med 1999, 160:304–312. Using electron microscopy analysis, this study established piecemeal degranulation as the principal mode of exocytotic release from tissue eosinophils in allergic individuals in nasal biopsy samples.

    PubMed  Google Scholar 

  84. Newman TM, Tian M, Gomperts BD: Ultrastructural characterization of tannic acid-arrested degranulation of permeabilized guinea pig eosinophils stimulated with GTP-g-S. Eur J Cell Biol 1996, 70:209–220.

    PubMed  CAS  Google Scholar 

  85. Lacy P, Mahmudi-Azer S, Bablitz B, et al.: Rapid mobilization of intracellularly stored RANTES in response to interferon-g in human eosinophils. Blood 1999, 94:23–32. The first concise report associating IFN-g with the rapid release of the chemokine RANTES by eosinophils. This study also demonstrated for the first time an in vitro model of eosinophil piecemeal degranulation.

    PubMed  CAS  Google Scholar 

  86. Cromwell O, Bennett JP, Hide I, et al.: Mechanisms of granule enzyme secretion from permeabilized guinea pig eosinophils. Dependence on Ca2+ and guanine nucleotides. J Immunol 1991, 147:1905–1911.

    PubMed  CAS  Google Scholar 

  87. Nüsse O, Lindau M, Cromwell O, et al.: Intracellular application of guanosine-5’-O-(3-thiotriphosphate) induces exocytotic granule fusion in guinea pig eosinophils. J Exp Med 1990, 171:775–786.

    Article  PubMed  Google Scholar 

  88. Gomperts BD: GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol 1990, 52:591–606.

    Article  PubMed  CAS  Google Scholar 

  89. Simons K, Zerial M: Rab proteins and the road maps for intracellular transport. Neuron 1993, 11:789–799.

    Article  PubMed  CAS  Google Scholar 

  90. Roa M, Paumet F, Le Mao J, et al.: Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (FceRI). J Immunol 1997, 159:2815–2823.

    PubMed  CAS  Google Scholar 

  91. Tuvim MJ, Adachi R, Chocano JF, et al.: Rab3D, a small GTPase, is localized on mast cell secretory granules and translocates to the plasma membrane upon exocytosis. Am J Respir Cell Mol Biol 1999, 20:79–89.

    PubMed  CAS  Google Scholar 

  92. Pombo I, Martin-Verdeaux S, Iannascoli B, et al.: IgE receptor type I-dependent regulation of a Rab3D-associated kinase. A possible link in the calcium-dependent assembly of SNARE complexes. J Biol Chem 2001, in press.

  93. Lacy P, Thompson N, Tian M, et al.: A survey of GTP-binding proteins and other potential key regulators of exocytotic secretion in eosinophils. Apparent absence of rab3 and vesicle fusion protein homologues. J Cell Sci 1995, 108:3547–3556.

    PubMed  CAS  Google Scholar 

  94. Söllner T, Whiteheart SW, Brunner M, et al.: SNAP receptors implicated in vesicle targeting and fusion. Nature 1993, 362:318–324.

    Article  PubMed  Google Scholar 

  95. Lacy P, Logan MR, Bablitz B, Moqbel R: Fusion protein vesicle-associated membrane protein 2 is implicated in IFN-g-induced piecemeal degranulation in human eosinophils from atopic individuals. J Allergy Clin Immunol 2001, 107:671–678.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamko, D., Lacy, P. & Moqbel, R. Mechanisms of eosinophil recruitment and activation. Curr Allergy Asthma Rep 2, 107–116 (2002). https://doi.org/10.1007/s11882-002-0005-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-002-0005-2

Keywords

Navigation