Skip to main content

Advertisement

Log in

Validation of MODIS AOD retrievals in West Africa: a comparison with AERONET observations

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

There is increasing use of satellite data for environmental monitoring in data-sparse regions of the world. However, challenges such as cloud cover and swath area of satellite sensors necessitate the validation of satellite retrievals, particularly in regions where ground-based measurements or high-density coverage may be sparse. In this study, the performance of two NASA MODIS products—AQUA and TERRA—were compared with observational AERONET data over eight study sites in West Africa for the period 2000–2022. Results obtained showed a regression slope between 0.09 and 0.83 for TERRA data and 0.11 and 0.86 for AQUA data. The normalized root mean square error between AERONET and AQUA data was in the range of 0.097–0.517, while a range of 0.123–0.540 was reported for TERRA data. Although both AQUA and TERRA AOD products had similar aerosol trends across the eight AERONET study sites, AQUA has an overall better performance with lower error estimates. Generally, the satellite retrieved data performed well during the wet season but poorly in the dry season. The performance of both MODIS products over the region suggests they can be used at most locations with little error/adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data used in this work is publicly available in repositories stated within the manuscript.

References

  • Alam K, us sahar N, Iqbal Y et al (2014) Aerosol characteristics and radiative forcing during pre-monsoon and post-monsoon seasons in an urban environment. Aerosol Air Qual Res 14(1):99–107

    Article  Google Scholar 

  • Aldabash M, BektasBalcik F, Glantz P (2020) Validation of MODIS c6. 1 and MERRA-2 AOD using AERONET observations: a comparative study over Turkey. Atmosphere 11(9):905

    Article  Google Scholar 

  • Ali MA, Assiri M, Shahid S, Dambul R (2015) MODIS dark target and deep blue aerosol optical depth validation over Bangladesh. Malaysian J Soc Space 11:74–83

    Google Scholar 

  • Ångström A (1961) Techniques of determinig the turbidity of the atmosphere. Tellus 13(2):214–223

    Article  Google Scholar 

  • Antuña-Marrero JC, Cachorro Revilla V, GarcaParrado F, de Frutos BÁ, Rodrguez Vega A, Mateos D, Estevan Arredondo R, Toledano C (2018) Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba. Atmospher Measure Tech 11(4):2279–2293

    Article  Google Scholar 

  • Bado N, Ouédraogo A, Guengané H, Ky TSM, Bazyomo SD, Korgo B, Dramé MS, Sall SM, Kieno FP, Bathiebo DJ et al (2019) Climatological analysis of aerosols optical properties by airborne sensors and in situ measurements in West Africa: case of the Sahelian Zone. Open J Air Pollut 8(04):118

    Article  Google Scholar 

  • Bilal M, Nichol JE, Nazeer M (2015) Validation of AQUA-MODIS c051 and c006 operational aerosol products using AERONET measurements over Pakistan. IEEE J Sel Top Appl Earth Obs Remote Sens 9(5):2074–2080

    Article  Google Scholar 

  • Boiyo R, Kumar KR, Zhao T (2017) Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa. Atmos Res 197:277–288

    Article  Google Scholar 

  • Bright JM, Gueymard CA (2019) Climate-specific and global validation of MODIS AQUA and TERRA aerosol optical depth at 452 AERONET stations. Sol Energy 183:594–605

    Article  Google Scholar 

  • Busco G, Yang SR, Seo J, Hassan YA (2020) Sneezing and asymptomatic virus transmission. Phys Fluids 32(7):073309

    Article  CAS  Google Scholar 

  • Che H, Yang L, Liu C, Xia X, Wang Y, Wang H, Wang H, Lu X, Zhang X (2019) Long-term validation of MODIS c6 and c6. 1 dark target aerosol products over China using CARSNET and AERONET. Chemosphere 236:124268

    Article  CAS  Google Scholar 

  • DeCarlo P, Dunlea E, Kimmel J, Aiken A, Sueper D, Crounse J, Wennberg P, Emmons L, Shinozuka Y, Clarke A et al (2008) Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the Milagro Campaign. Atmos Chem Phys 8(14):4027–4048

    Article  CAS  Google Scholar 

  • Dobaczewski J, Nazarewicz W, Reinhard P (2014) Error estimates of theoretical models: a guide. J Phys g: Nucl Part Phys 41(7):074001

    Article  CAS  Google Scholar 

  • Doherty OM, Riemer N, Hameed S (2014) Role of the convergence zone over West Africa in controlling Saharan mineral dust load and transport in the boreal summer. Tellus b: Chem Phys Meteorol 66(1):23191

    Article  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res: Atmospheres 105(D16):20673–20696

    Article  Google Scholar 

  • Farahat A (2019) Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Ann Geophys, Copernicus GmbH 37:49–64

    Article  CAS  Google Scholar 

  • Filonchyk M, Hurynovich V (2020) Validation of MODIS AEROSOL products with AERONET measurements of different land cover types in areas over Eastern Europe and China. J Geovis Spat Anal 4(1):1–11

    Article  Google Scholar 

  • Flamant C, Knippertz P, Fink AH, Akpo A, Brooks B, Chiu CJ, Coe H, Danuor S, Evans M, Jegede O et al (2018) The dynamics–aerosol–chemistry–cloud interactions in West Africa field campaign: overview and research highlights. Bull Am Meteor Soc 99(1):83–104

    Article  Google Scholar 

  • García-Pando CP, Stanton MC, Diggle PJ, Trzaska S, Miller RL, Perlwitz JP, Baldasano JM, Cuevas E, Ceccato P, Yaka P et al (2014) Soil dust aerosols and wind as predictors of seasonal meningitis incidence in Niger. Environ Health Perspect 122(7):679–686

    Article  Google Scholar 

  • Gili S, Vanderstraeten A, Chaput A, King J, Gaiero DM, Delmonte B, Vallelonga P, Formenti P, Di Biagio C, Cazanau M et al (2022) South African dust contribution to the high southern latitudes and East Antarctica during interglacial stages. Commun Earth Environ 3(1):1–12

    Article  Google Scholar 

  • Guelle W, Schulz M, Balkanski Y, Dentener F (2001) Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. J Geophys Res: Atmospheres 106(D21):27509–27524

    Article  CAS  Google Scholar 

  • Hao W, Ward D, Susott R, Babbitt R, Nordgren B, Kaufman Y, Holben B, Giles D (2005) Comparison of aerosol optical thickness measurements by MODIS, AERONET sun photometers, and forest service handheld sun photometers in southern Africa during the SAFARI 2000 campaign. Int J Remote Sens 26(19):4169–4183

    Article  Google Scholar 

  • Hayes P, Ortega A, Cubison M, Froyd K, Zhao Y, Cliff S, Hu W, Toohey D, Flynn J, Lefer B et al (2013) Organic aerosol composition and sources in Pasadena, California, during the 2010 Calnex campaign. J Geophys Res: Atmospheres 118(16):9233–9257

    Article  Google Scholar 

  • Husar RB (2004) Intercontinental transport of dust: historical and recent observational evidence. Air Pollution pp 277–294. https://doi.org/10.1007/b94531

  • Hutauruk RC, Permana DS, Rangga IA, SucianingsihaC, Nuraini TA (2022) Performance of MODIS deep blue collection 6.1 Aerosol optical depth products over Indonesia: Spatiotemporal variations and aerosol types. Adv Meteorol 2022. https://doi.org/10.1155/2022/7544310

  • Jacobson MZ, Kaufman YJ (2006) Wind reduction by aerosol particles. Geophys Res Lett 33(24). https://doi.org/10.1029/2006GL027838

  • Johnson BT, Heese B, McFarlane SA, Chazette P, Jones A, Bellouin N (2008) Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. J Geophys Res Atmos 113(D23). https://doi.org/10.1029/2008JD009848

  • Jones RM, Brosseau LM (2015) Aerosol transmission of infectious disease. J Occup Environ Med 57(5):501–508

    Article  Google Scholar 

  • Jung J, Lee H, Kim YJ, Liu X, Zhang Y, Gu J, Fan S (2009) Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in guangzhou during the 2006 Pearl River Delta campaign. J Environ Manage 90(11):3231–3244

    Article  CAS  Google Scholar 

  • Justice C, Giglio L, Korontzi S, Owens J, Morisette J, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83(1–2):244–262

    Article  Google Scholar 

  • Kassianov E, Cromwell E, Monroe J, Riihimaki LD, Flynn C, Barnard J, Michalsky JJ, Hodges G, Shi Y, Comstock JM (2021) Harmonized and high-quality datasets of aerosol optical depth at a US continental site, 1997–2018. Scientific Data 8(1):82

    Article  CAS  Google Scholar 

  • Khatri P, Hayasaka T, Holben BN, Singh RP, Letu H, Tripathi SN (2022) Increased aerosols can reverse twomey effect in water clouds through radiative pathway. Sci Rep 12(1):20666

    Article  CAS  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039

    Article  CAS  Google Scholar 

  • Lee J, Kim J, Song C, Kim S, Chun Y, Sohn B, Holben B (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44(26):3110–3117

    Article  CAS  Google Scholar 

  • Li X, Mauzerall DL, Bergin MH (2020) Global reduction of solar power generation efficiency due to aerosols and panel soiling. Nature Sustainability 3(9):720–727

    Article  Google Scholar 

  • Lu X, Mao F, Pan Z, Gong W, Zhu Y, Yang J (2020) Enhancement of atmospheric stability by anomalous elevated aerosols during winter in China. J Geophys Res: Atmospheres 125(4):e2019JD031734

    Article  Google Scholar 

  • Murphy DM, Froyd KD, Bian H, Brock CA, Dibb JE, DiGangi JP, Diskin G, Dollner M, Kupc A, Scheuer EM et al (2019) The distribution of sea-salt aerosol in the global troposphere. Atmos Chem Phys 19(6):4093–4104

    Article  CAS  Google Scholar 

  • Nébon B, Dramé M, Bruno K, Florent K, Sall S, Joseph D (2018) Optical and microphysical analysis of aerosols in Sahelian zone: case of the Ouagadougou City in Burkina Faso. Elixir Int J 119:50975–50982

    Google Scholar 

  • Ogunjo S, Olaniyan O, Olusegun C, Kayode F, Okoh D, Jenkins G (2022) The role of meteorological variables and aerosols in the transmission of COVID-19 during Harmattan season. GeoHealth 6(2):e2021GH000521

    Article  CAS  Google Scholar 

  • Ogunjobi K, Awoleye P (2019) Intercomparison and validation of satellite and ground-based aerosol optical depth (AOD) retrievals over six AERONET sites in west africa. Aerosol Science and Engineering 3(1):32–47

    Article  Google Scholar 

  • Prasad AK, Singh RP (2009) Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India. J Geophys Res Atmos 114(D5). https://doi.org/10.1029/2008JD011230

  • Prospero J, Glaccum R, Nees R (1981) Atmospheric transport of soil dust from Africa to South America. Nature 289(5798):570–572

    Article  CAS  Google Scholar 

  • Qi Y, Ge J, Huang J (2013) Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin Sci Bull 58(20):2497–2506

    Article  CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl J, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  CAS  Google Scholar 

  • Reeves C, Formenti P, Afif C, Ancellet G, Attié JL, Bechara J, Borbon A, Cairo F, Coe H, Crumeyrolle S et al (2010) Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA. Atmos Chem Phys 10(16):7575–7601

    Article  CAS  Google Scholar 

  • Ridley D, Solomon S, Barnes J, Burlakov V, Deshler T, Dolgii S, Herber AB, Nagai T, Neely R III, Nevzorov A et al (2014) Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys Res Lett 41(22):7763–7769

    Article  CAS  Google Scholar 

  • Santese M, De Tomasi F, Perrone M (2007) Aeronet versus modis aerosol parameters at different spatial resolutions over southeast Italy. J Geophys Res: Atmospheres 112(D10)

  • Spracklen DV, Logan JA, Mickley LJ, Park RJ, Yevich R, Westerling AL, Jaffe DA (2007) Wildfires drive interannual variability of organic carbon aerosol in the western US in summer. Geophys Res Lett 34(16). https://doi.org/10.1029/2007GL030037

  • Viana M, Pey J, Querol X, Alastuey A, De Leeuw F, Lükewille A (2014) Natural sources of atmospheric aerosols influencing air quality across Europe. Sci Total Environ 472:825–833

    Article  CAS  Google Scholar 

  • Wei J, Li Z, Peng Y, Sun L (2019) MODIS collection 6.1 aerosol optical depth products over land and ocean: validation and comparison. Atmos Environ 201:428–440

    Article  CAS  Google Scholar 

  • Zheng Y, Davis SJ, Persad GG, Caldeira K (2020) Climate effects of aerosols reduce economic inequality. Nat Clim Chang 10(3):220–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiana Funmilola Olusegun.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent to publish

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okpalaonwuka, C., Olusegun, C.F., Olusola, A. et al. Validation of MODIS AOD retrievals in West Africa: a comparison with AERONET observations. Air Qual Atmos Health 16, 2085–2094 (2023). https://doi.org/10.1007/s11869-023-01391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-023-01391-4

Keywords

Navigation