Skip to main content

Advertisement

Log in

Source apportionment of PM2.5 and their associated metallic elements by positive matrix factorization at a traffic site in Constantine, Algeria

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Chemical characterization of PM2.5 (major and trace elements) was carried out for a source apportionment study of PM2.5 at a traffic site in Constantine, Algeria, from March 2017 to March 2018. For this purpose, several tools were used of which PMF, CPF, PSCF, Spearman correlation matrix and HYSPLIT back trajectories. The mean annual concentration of PM2.5 at the sampling site was 54.07 ± 28.81 µg/m3. This value is much higher than the annual threshold recommended by the WHO of 10 μg/m3. Based on the PMF modelling, five sources were identified: sea salts (15.1%), industrial activities (18.9%), non-exhaust emissions (wear of brakes, tires and road surfaces) (24.2%), exhaust emissions (mixed diesel and gasoline engine exhaust) (15.8%) and mineral dust (25.9%) as the main sources of metallic aerosols at the sampling site in Constantine. Our results revealed that anthropogenic activities (traffic and industry) contributed 59% to all emissions, while natural sources (mineral dust and sea salt) accounted for 41%. Traffic-related sources are the major contributor to anthropogenic emissions (40%) with non-exhaust emissions being the dominant source. As anthropogenic emissions are the leading sources, their control is of utmost importance for improving air quality. The concentrations of PM2.5 tend to increase appreciably with temperature and wind speed for a relative humidity less than 60%. The contribution of vehicular emissions is affected by relative humidity and temperature while industrial emissions are affected mainly by wind intensity and direction. Relative humidity, temperature and wind speed are determining parameters of mineral dust. There are seasonal variations in the contributions of the PMF-derived sources. Summer undergoes significant contributions of three factors: sea salts, industrial emissions and mineral dust. Spring is affected mainly by industrial emissions and non-exhaust emissions. Winter experiences a drastic contribution of the exhaust emission factor. Autumn is the least affected season by mineral dust and sea salts. It is rather affected by industrial and traffic emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017

    Article  CAS  Google Scholar 

  • Adamiec E, Jarosz-Krzemińska E, Wiesza\la R, (2016) Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monit Assess 188:1–11

    Article  CAS  Google Scholar 

  • Alastuey A, Querol X, Castillo S et al (2005) Characterisation of TSP and PM2.5 at Izaña and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002). Atmos Environ 39:4715–4728

    Article  CAS  Google Scholar 

  • Ali-Khodja H, Belaala A, Demmane-Debbih W et al (2008) Air quality and deposition of trace elements in Didouche Mourad, Algeria. Environ Monit Assess 138:219–231

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A et al (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Moreno T et al (2011) Sources and variability of inhalable road dust particles in three European cities. Atmos Environ 45:6777–6787

    Article  CAS  Google Scholar 

  • Anda A, Soos G, da Silva JAT, Kozma-Bognar V (2015) Regional evapotranspiration from a wetland in Central Europe, in a 16-year period without human intervention. Agric for Meteorol 205:60–72

    Article  Google Scholar 

  • ANDI (2013) La vile de Constantine. Agence Nationale de Développement et de l’Investissement. Wiley Online Library

  • Arditsoglou A, Samara C (2005) Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59:669–678

    Article  CAS  Google Scholar 

  • Ashbaugh LL, Malm WC, Sadeh WZ (1985) A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos Environ 19(8):1263–1270

    Article  CAS  Google Scholar 

  • Athanasopoulou E, Tombrou M, Russell AG, et al (2010) Implementation of road and soil dust emission parameterizations in the aerosol model CAMx: applications over the greater Athens urban area affected by natural sources. Journal of Geophysical Research: Atmospheres 115:

  • Avecilla F, Panebianco JE, Buschiazzo DE (2015) Variable effects of saltation and soil properties on wind erosion of different textured soils. Aeol Res 18:145–153

    Article  Google Scholar 

  • Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res 164:167–187

    Article  Google Scholar 

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038

    Article  CAS  Google Scholar 

  • Begum BA, Biswas SK, Hopke PK, Cohen DD (2006) Multi-element analysis and characterization of atmospheric particulate pollution in Dhaka. Aerosol Air Qual Res 6(4):334–359

    Article  CAS  Google Scholar 

  • Belarbi N, Belamri M, Dahmani B, Benamar MA (2020) Road traffic and PM10, PM2.5 emission at an urban area in Algeria: identification and statistical analysis. Pollution 6:651–660

    CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108

    Article  CAS  Google Scholar 

  • Bem H, Gallorini M, Rizzio E, Krzemińska M (2003) Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and in Milan, Italy. Environ Int 29:423–428

    Article  CAS  Google Scholar 

  • Bencharif-Madani F, Ali-Khodja H, Kemmouche A et al (2019) Mass concentrations, seasonal variations, chemical compositions and element sources of PM10 at an urban site in Constantine, northeast Algeria. J Geochem Explor 206:106356

    Article  CAS  Google Scholar 

  • Bevan DR, Manger WE (1985) Effect of particulates on metabolism and mutagenicity of benzo [a] pyrene. Chem Biol Interact 56:13–28

    Article  CAS  Google Scholar 

  • Biersteker K (1976) Sulfur dioxide and suspended particulate matter: where do we stand? Environ Res 11:287–304

    Article  CAS  Google Scholar 

  • Boman J, Shaltout AA, Abozied AM, Hassan SK (2013) On the elemental composition of PM2.5 in central Cairo. Egypt X-Ray Spectrometry 42:276–283

    Article  CAS  Google Scholar 

  • Boubel RW, Vallero D, Fox DL, Turner B, Stern AC (2013) Fundamentals of air pollution. Elsevier, New York

    Google Scholar 

  • Brewer PG, Riley JP, Skirrow G (1975) Chemical oceanography

  • Buat-Menard P, Morelli J, Chesselet R (1974) Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic. J Rech Atmosph 8:661–673

    CAS  Google Scholar 

  • Bukowiecki N, Lienemann P, Hill M et al (2010) PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos Environ 44:2330–2340

    Article  CAS  Google Scholar 

  • Cao JJ, Chow JC, Watson JG et al (2008) Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau. Atmos Environ 42:2261–2275

    Article  CAS  Google Scholar 

  • Celis JE, Morales JR, Zaror CA, Inzunza JC (2004) A study of the particulate matter PM10 composition in the atmosphere of Chillán, Chile. Chemosphere 54:541–550

    Article  CAS  Google Scholar 

  • Chan D, Stachowiak GW (2004) Review of automotive brake friction materials Proceedings of the Institution of Mechanical Engineers, Part d. J Automob Eng 218:953–966

    Article  Google Scholar 

  • Charron A, Harrison RM (2003) Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ 37:4109–4119

    Article  CAS  Google Scholar 

  • Csavina J, Field J, Félix O, Corral-Avitia AY, Sáez AE, Betterton EA (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487:82–90

    Article  CAS  Google Scholar 

  • Chen G, Li S, Knibbs LD, Hamm NA, Cao W, Li T et al (2018) A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci Total Environ 63:52–60

    Article  Google Scholar 

  • Cheng Y, Lee SC, Ho KF et al (2010) Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong. Sci Total Environ 408:1621–1627

    Article  CAS  Google Scholar 

  • European Commission (2011) Commission staff working paper establishing guidelines for determination of contributions from the re-suspension of particulates following winter sanding or salting of roads under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Citeseer

  • Dawson JP, Adams PJ, Pandis SN (2007) Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study. Atmos Chem Phys 7:4295–4309

    Article  CAS  Google Scholar 

  • Demdoum A, Hamed Y, Feki M et al (2015) Multi-tracer investigation of groundwater in El Eulma Basin (Northwestern Algeria), North Africa. Arab J Geosci 8:3321–3333

    Article  CAS  Google Scholar 

  • Denier van der Gon H, Jozwicka M, Hendriks E, et al (2010) Mineral dust as a component of particulate matter. Delft, the Netherlands

  • Deshmukh DK, Deb MK, Mkoma SL (2013) Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Qual Atmos Health 6:259–276

    Article  CAS  Google Scholar 

  • Doumbia EHT (2012) Caractérisation physico-chimique de la pollution atmosphérique en Afrique de l’Ouest et étude d’impact sur la santé. PhD Thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier

  • Easter RC, Peters LK (1994) Binary homogeneous nucleation: temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere. J Appl Meteorol Climatol 33:775–784

    Article  Google Scholar 

  • Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100

    Article  Google Scholar 

  • Eriksson M, Bergman F, Jacobson S (1999) Surface characterisation of brake pads after running under silent and squealing conditions. Wear 232:163–167

    Article  CAS  Google Scholar 

  • Evan AT, Fiedler S, Zhao C et al (2015) Derivation of an observation-based map of North African dust emission. Aeol Res 16:153–162

    Article  Google Scholar 

  • Feliu S, Morcillo M, Chico B (1999) Effect of distance from sea on atmospheric corrosion rate. Corrosion 55:883–891

    Article  CAS  Google Scholar 

  • Feng X, Wang S (2012) Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J Environ Sci 24:665–674

    Article  CAS  Google Scholar 

  • Forsberg B, Hansson H-C, Johansson C et al (2005) Comparative health impact assessment of local and regional particulate air pollutants in Scandinavia. AMBIO A Human Environ 34:11–19

    Article  Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, et al (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics 50:

  • Gong SL, Barrie LA, Blanchet J-P (1997) Modeling sea-salt aerosols in the atmosphere: 1. Model development. Journal of Geophysical Research: Atmospheres 102:3805–3818

    Article  CAS  Google Scholar 

  • Gupta I, Salunkhe A, Kumar R (2012) Source apportionment of PM10 by positive matrix factorization in urban area of Mumbai, India. The Scientific World Journal 2012:

  • Gustafsson ME, Franzén LG (1996) Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden. Atmos Environ 30:977–989

    Article  CAS  Google Scholar 

  • Gustafsson M, Blomqvist G, Gudmundsson A, Dahl A, Swietlicki E, Bohgard M et al (2008) Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Sci Total Environ 393(2-3):226–240

    Article  CAS  Google Scholar 

  • Harrison RM, Yin J, Mark D, Stedman J, Appleby RS, Booker J, Moorcroft S (2001) Studies of the coarse particle (2.5–10 μm) component in UK urban atmospheres. Atmos Environ 35(21):3667–3679

    Article  CAS  Google Scholar 

  • Hasheminassab S, Daher N, Saffari A et al (2014) Spatial and temporal variability of sources of ambient fine particulate matter (PM 2.5) in California. Atmos Chem Phys 14:12085–12097

    Article  Google Scholar 

  • Hassan SK, Khoder MI (2017) Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza. Egypt Atmos Environ 150:346–355

    Article  CAS  Google Scholar 

  • Heideman G, Noordermeer JW, Datta RN, van Baarle B (2004) Zinc loaded clay as activator in sulfur vulcanization: a new route for zinc oxide reduction in rubber compounds. Rubber Chem Technol 77:336–355

    Article  CAS  Google Scholar 

  • Heideman G, Datta RN, Noordermeer JW, van Baarle B (2005) Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies. J Appl Polym Sci 95:1388–1404

    Article  CAS  Google Scholar 

  • Hieu NT, Lee B-K (2010) Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos Res 98:526–537

    Article  CAS  Google Scholar 

  • Hildemann LM, Markowski GR, Cass GR (1991) Chemical composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 25:744–759

    Article  CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons

    Google Scholar 

  • Hjortenkrans DS, Bergbäck BG, Häggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ Sci Technol 41:5224–5230

    Article  CAS  Google Scholar 

  • Ho KF, Lee SC, Chow JC, Watson JG (2003) Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos Environ 37:1023–1032

    Article  CAS  Google Scholar 

  • Hoffman GL, Duce RA (1972) Consideration of the chemical fractionation of alkali and alkaline earth metals in the Hawaiian marine atmosphere. J Geophys Res 77:5161–5169

    Article  CAS  Google Scholar 

  • Hoke PK (2010) The application of receptor modeling to air quality data. Pollution Atmospherique 91–109

  • Huang S, Arimoto R, Rahn KA (2001) Sources and source variations for aerosol at Mace Head, Ireland. Atmos Environ 35:1421–1437

    Article  CAS  Google Scholar 

  • Hussein T, Karppinen A, Kukkonen J et al (2006) Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos Environ 40:1427–1440

    Article  CAS  Google Scholar 

  • Huzita K, Kasama T (1983) Geology of the Kobe district. Quadrangle series (115 pp) Geol Surv Jpn 1:

  • Ilacqua V, Hänninen O, Saarela K et al (2007) Source apportionment of population representative samples of PM2.5 in three European cities using structural equation modelling. Sci Total Environ 384:77–92

    Article  CAS  Google Scholar 

  • Health Effects Institute (2019) State of global air 2019. Special report

  • Jamriska M, Morawska L, Mergersen K (2008) The effect of temperature and humidity on size segregated traffic exhaust particle emissions. Atmos Environ 42(10):2369–2382

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jeong C-H, Wang JM, Hilker N et al (2019) Temporal and spatial variability of traffic-related PM2.5 sources: comparison of exhaust and non-exhaust emissions. Atmos Environ 198:55–69

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Kang X, Cui L, Zhao X et al (2015) Effects of wetlands on reducing atmospheric fine particles PM2.5 in Beijing. Chin J Ecol 34:2807–2813

    Google Scholar 

  • Karar K, Gupta AK, Kumar A, Biswas AK (2006) Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM 10 particulates at the two sites of Kolkata, India. Environ Monit Assess 120:347–360

    Article  CAS  Google Scholar 

  • Karnae S, John K (2011) Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmos Environ 45:3769–3776

    Article  CAS  Google Scholar 

  • Kassomenos PA, Vardoulakis S, Chaloulakou A et al (2014) Study of PM10 and PM2.5 levels in three European cities: analysis of intra and inter urban variations. Atmos Environ 87:153–163

    Article  CAS  Google Scholar 

  • Kemmouche A, Ali-Khodja H, Bencharif-Madani F, Mahía PL, Querol X (2017) Comparative study of bulk and partial digestion methods for airborne PM10-bound elements in a high mineral dust urban site in Constantine. Algeria. Int J Environ Anal Chem 97(12):1132–1150

    Article  CAS  Google Scholar 

  • Khadidja N, Maatoug M, Lazreg B et al (2019) Quantification of mass concentrations aerosols PM2.5 in primary schools. Case study: Tiaret city (Algeria). Environ Res Eng Manag 75:47–59

    Article  Google Scholar 

  • Kim E, Hopke PK (2004) Comparison between conditional probability function and nonparametric regression for fine particle source directions. Atmos Environ 38:4667–4673

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2004) Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmos Environ 38:3349–3362

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Kenski DM, Koerber M (2005) Sources of fine particles in a rural midwestern US area. Environ Sci Technol 39:4953–4960

    Article  CAS  Google Scholar 

  • Kishcha P, Nickovic S, Starobinets B et al (2011) Sea-salt aerosol forecasts compared with daily measurements at the island of Lampedusa (Central Mediterranean). Atmos Res 100:28–35

    Article  Google Scholar 

  • Kong S, Ji Y, Lu B et al (2011) Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos Environ 45:5351–5365

    Article  CAS  Google Scholar 

  • Kopanakis I, Mammi-Galani E, Pentari D et al (2018) Ambient particulate matter concentration levels and their origin during dust event episodes in the eastern Mediterranean. Aerosol Sci Eng 2:61–73

    Article  Google Scholar 

  • Kulmala M, Maso MD, Mäkelä JM et al (2001) On the formation, growth and composition of nucleation mode particles. Tellus B 53:479–490

    Article  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra. India Sci Total Environ 407:6196–6204

    Article  CAS  Google Scholar 

  • Kumar AV, Patil RS, Nambi KSV (2001) Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmos Environ 35:4245–4251

    Article  CAS  Google Scholar 

  • Lamini A, Hacini M (2018) Geology and geochemistry of endoroique basin case of Baghdad chott southern of Algeria. In: AIP Conference Proceedings. AIP Publishing LLC, p 020006

  • Legret M, Pagotto C (1999) Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ 235:143–150

    Article  CAS  Google Scholar 

  • Li R, Li Z, Gao W et al (2015) Diurnal, seasonal, and spatial variation of PM2.5 in Beijing. Sci Bull 60:387–395

    Article  CAS  Google Scholar 

  • Lin C-C, Chen S-J, Huang K-L et al (2005) Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ Sci Technol 39:8113–8122

    Article  CAS  Google Scholar 

  • Lindgren Å (1996) Asphalt wear and pollution transport. Sci Total Environ 189:281–286

    Article  Google Scholar 

  • Lodhi A, Ghauri B, Khan MR et al (2009) Particulate matter (PM2.5) concentration and source apportionment in Lahore. J Braz Chem Soc 20:1811–1820

    Article  CAS  Google Scholar 

  • Lokorai K, Ali-Khodja H, Khardi S et al (2021) Influence of mineral dust on the concentration and composition of PM10 in the city of Constantine. Aeol Res 50:100677

    Article  Google Scholar 

  • Lou C, Liu H, Li Y et al (2017) Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta. China Environ Monit Assess 189:1–16

    Article  CAS  Google Scholar 

  • Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci Total Environ 425:176–183

    Article  CAS  Google Scholar 

  • Marcazzan GM, Ceriani M, Valli G, Vecchi R (2003) Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling. Sci Total Environ 317:137–147

    Article  CAS  Google Scholar 

  • Matassoni L, Pratesi G, Centioli D et al (2009) Saharan dust episodes in Italy: influence on PM 10 daily limit value (DLV) exceedances and the related synoptic. J Environ Monit 11:1586–1594

    Article  CAS  Google Scholar 

  • Mazzei F, D’Alessandro A, Lucarelli F et al (2006) Elemental composition and source apportionment of particulate matter near a steel plant in Genoa (Italy). Nucl Instrum Methods Phys Res, Sect B 249:548–551

    Article  CAS  Google Scholar 

  • McKay WA, Garland JA, Livesley D et al (1994) The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water. Atmos Environ 28:3299–3309

    Article  CAS  Google Scholar 

  • McKenna Neuman C, Sanderson S (2008) Humidity control of particle emissions in aeolian systems. Journal of Geophysical Research: Earth Surface 113:

  • Morcillo M, Chico B, Mariaca L, Otero E (2000) Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site. Corros Sci 42:91–104

    Article  CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A et al (2010) Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ 408:4569–4579

    Article  CAS  Google Scholar 

  • Naidja L, Ali-Khodja H, Khardi S (2018) Sources and levels of particulate matter in North African and Sub-Saharan cities: a literature review. Environ Sci Pollut Res 25:12303–12328

    Article  CAS  Google Scholar 

  • Nilsson ED, Kulmala M (1998) The potential for atmospheric mixing processes to enhance the binary nucleation rate. Journal of Geophysical Research: Atmospheres 103:1381–1389

    Article  CAS  Google Scholar 

  • Norris GA, Duvall R, Brown SG, Bai S (2014) Positive matrix factorization (PMF) 5.0 fundamentals and user guide prepared for the US Environmental Protection Agency. USEPA, Office Res Dev, Washington DC

  • Omstedt G, Bringfelt B, Johansson C (2005) A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. Atmos Environ 39:6088–6097

    Article  CAS  Google Scholar 

  • Oucher N, Kerbachi R, Ghezloun A, Merabet H (2015) Magnitude of air pollution by heavy metals associated with aerosols particles in Algiers. Energy Procedia 74:51–58

    Article  CAS  Google Scholar 

  • Owoade KO, Hopke PK, Olise FS et al (2015) Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife-Ibadan highway. Nigeria Atmos Pollut Res 6:107–119

    Article  CAS  Google Scholar 

  • Ozaki H, Watanabe I, Kuno K (2004) Investigation of the heavy metal sources in relation to automobiles. Water Air Soil Pollut 157:209–223

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Paatero P, Hopke PK (2003) Discarding or downweighting high-noise variables in factor analytic models. Anal Chim Acta 490:277–289

    Article  CAS  Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298

    Article  CAS  Google Scholar 

  • Pant P, Shi Z, Pope FD, Harrison RM (2017) Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: trace metals and organic molecular markers. Aerosol Air Qual Res 17:117–130

    Article  CAS  Google Scholar 

  • Pekney NJ, Davidson CI, Zhou L, Hopke PK (2006) Application of PSCF and CPF to PMF-modeled sources of PM2.5 in Pittsburgh. Aerosol Sci Technol 40:952–961

    Article  CAS  Google Scholar 

  • Pérez N, Pey J, Querol X, Alastuey A, López JM, Viana M (2008) Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos Environ 42(8):1677–1691

    Article  Google Scholar 

  • Pey J, Querol X, Alastuey A et al (2009) Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. Atmos Environ 43:4407–4415

    Article  CAS  Google Scholar 

  • Poirot RL, Wishinski PR, Hopke PK, Polissar AV (2001) Comparative application of multiple receptor methods to identify aerosol sources in northern Vermont. Environ Sci Technol 35:4622–4636

    Article  CAS  Google Scholar 

  • Prati P, Zucchiatti A, Lucarelli F, Mando PA (2000) Source apportionment near a steel plant in Genoa (Italy) by continuous aerosol sampling and PIXE analysis. Atmos Environ 34:3149–3157

    Article  CAS  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, et al (2002) Environmental characterization of global sources of atmospheric soil dust derived from the nimbus7 toms absorbing aerosol product, rev. In: Reviews of geophysics. Citeseer

  • Quackenboss JJ, Lebowitz MD, Crutchfield CD (1989) Indoor-outdoor relationships for particulate matter: exposure classifications and health effects. Environ Int 15:353–360

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Moreno T et al (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz CR, Cots N et al (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos Environ 35(36):6407–6419

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Rodrıguez S, Viana MM, Artınano B, Salvador P et al (2004a) Levels of particulate matter in rural, urban and industrial sites in Spain. Sci Total Environ 334:359–376

    Article  Google Scholar 

  • Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM et al (2004b) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos environ 38(38):6547–6555

    Article  CAS  Google Scholar 

  • Querol X, Perez N, Reche C et al (2019) African dust and air quality over Spain: is it only dust that matters? Sci Total Environ 686:737–752

    Article  CAS  Google Scholar 

  • Ravi S, D’Odorico P, Over TM, Zobeck TM (2004) On the effect of air humidity on soil susceptibility to wind erosion: the case of air-dry soils. Geophysical Research Letters 31:

  • Rehn LP, Waked A, Charron A, Piot C, Besombes JL et al (2014) Source apportionment of traffic exhaust and nonexhaust of PM10 using Positive Matrix Factorization (PMF). Pollution Atmosphérique 221:1–9

    Google Scholar 

  • Remoundaki E, Bourliva A, Kokkalis P et al (2011) PM10 composition during an intense Saharan dust transport event over Athens (Greece). Sci Total Environ 409:4361–4372

    Article  CAS  Google Scholar 

  • Sabin LD, Lim JH, Venezia MT et al (2006) Dry deposition and resuspension of particle-associated metals near a freeway in Los Angeles. Atmos Environ 40:7528–7538

    Article  CAS  Google Scholar 

  • Safar ZS, Labib MW (2010) Assessment of particulate matter and lead levels in the Greater Cairo area for the period 1998–2007. J Adv Res 1:53–63

    Article  Google Scholar 

  • Salminen R, Plant JA, Reeder S, Salminen R (2005) Geochemical atlas of Europe. Part 1, background information, methodology and maps. Geological survey of Finland Espoo

  • Saradhi IV, Prathibha P, Hopke PK et al (2008) Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aeroso Air Qual Res 8:423–436

    Article  Google Scholar 

  • Savoie DL, Prospero JM (1980) Water-soluble potassium, calcium, and magnesium in the aerosols over the tropical North Atlantic. J Geophys Res Oceans 85:385–392

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics. Wiley

    Google Scholar 

  • Shahbazi H, Taghvaee S, Hosseini V, Afshin H (2016) A GIS based emission inventory development for Tehran. Urban Climate 17:216–229

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Saxena M et al (2014) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Climate 10:656–670

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Jain S et al (2016) Source apportionment of PM 2.5 in Delhi, India using PMF model. Bull Environ Contam Toxicol 97:286–293

    Article  CAS  Google Scholar 

  • Shen Z, Sun J, Cao J, Zhang L, Zhang Q, Lei Y et al (2016) Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Sci Total Environ 569:619–626

    Article  Google Scholar 

  • Shen ZX, Cao JJ, Arimoto R, et al (2007) Chemical composition and source characterization of spring aerosol over Horqin sand land in northeastern China. Journal of Geophysical Research Atmospheres 112

  • Singh N, Murari V, Kumar M et al (2017) Fine particulates over South Asia: review and meta-analysis of PM2.5 source apportionment through receptor model. Environ Pollut 223:121–136

    Article  CAS  Google Scholar 

  • Smolders E, Degryse F (2002) Fate and effect of zinc from tire debris in soil. Environ Sci Technol 36:3706–3710

    Article  CAS  Google Scholar 

  • Song Y, Zhang Y, Xie S et al (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40:1526–1537

    Article  CAS  Google Scholar 

  • Sudheer AK, Rengarajan R (2012) Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol Air Qual Res 12:923–933

    Article  CAS  Google Scholar 

  • Taghvaee S, Sowlat MH, Mousavi A et al (2018) Source apportionment of ambient PM2.5 in two locations in central Tehran using the positive matrix factorization (PMF) model. Sci Total Environ 628:672–686

    Article  Google Scholar 

  • Tahri M, Bounakhla M, Zghaïd M et al (2013) TXRF characterization and source identification by positive matrix factorization of airborne particulate matter sampled in Kenitra City (Morocco). X-Ray Spectrom 42:284–289

    Article  CAS  Google Scholar 

  • Taiwo AM, Harrison RM, Shi Z (2014) A review of receptor modelling of industrially emitted particulate matter. Atmos Environ 97:109–120

    Article  CAS  Google Scholar 

  • Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M (2018) Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers. Algeria Environ Pollut 232:252–263

    Article  CAS  Google Scholar 

  • Tauler R, Viana M, Querol X et al (2009) Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos Environ 43:3989–3997

    Article  CAS  Google Scholar 

  • Terrouche A, Ali-Khodja H, Kemmouche A et al (2016) Identification of sources of atmospheric particulate matter and trace metals in Constantine, Algeria. Air Qual Atmos Health 9:69–82

    Article  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282

    Article  CAS  Google Scholar 

  • Tian HZ, Lu L, Cheng K et al (2012) Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Sci Total Environ 417:148–157

    Article  Google Scholar 

  • Tran HN, Mölders N (2011) Investigations on meteorological conditions for elevated PM2.5 in Fairbanks. Alaska Atmos Res 99:39–49

    Article  CAS  Google Scholar 

  • Trousset P (1995) Djerid.(Jérid, Qastîliya). Encyclopédie berbère 2461–2465

  • Turunen M, Peräniemi S, Ahlgrén M, Westerholm H (1995) Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion. Anal Chim Acta 311:85–91

    Article  CAS  Google Scholar 

  • Ulbrich IM, Canagaratna MR, Zhang Q et al (2009) Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys 9:2891–2918

    Article  CAS  Google Scholar 

  • Vale MGR, Damin IC, Klassen A et al (2004) Method development for the determination of nickel in petroleum using line-source and high-resolution continuum-source graphite furnace atomic absorption spectrometry. Microchem J 77:131–140

    Article  CAS  Google Scholar 

  • von Uexküll O, Skerfving S, Doyle R, Braungart M (2005) Antimony in brake pads-a carcinogenic component? J Clean Prod 13:19–31

    Article  Google Scholar 

  • Wadden RA, Hawkins JL, Scheff PA, Franke JE (1991) Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes. Am Ind Hyg Assoc J 52:349–356

    Article  CAS  Google Scholar 

  • Wang J, Ogawa S (2015) Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int J Environ Res Public Health 12(8):9089–9101

    Article  CAS  Google Scholar 

  • Wang Y, Zhuang G, Sun Y, An Z (2006) The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ 40:6579–6591

    Article  CAS  Google Scholar 

  • Webb NP, Strong CL (2011) Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeol Res 3:165–179

    Article  Google Scholar 

  • Wen QZ (1989) Chinese loess geochemistry. Sci Press, Beijing 115–158

  • Westerlund K-G, Johansson C (2002) Emission of metals and particulate matter due to wear of brake linings in Stockholm. WIT Transactions on Ecology and the Environment 53:

  • Wimolwattanapun W, Hopke PK, Pongkiatkul P (2011) Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmos Pollut Res 2:172–181

    Article  CAS  Google Scholar 

  • Xu J, Bergin MH, Greenwald R, et al (2004) Aerosol chemical, physical, and radiative characteristics near a desert source region of northwest China during ACE-Asia. Journal of Geophysical Research: Atmospheres 109:

  • Yin D, Nickovic S, Sprigg WA (2007) The impact of using different land cover data on wind-blown desert dust modeling results in the southwestern United States. Atmos Environ 41:2214–2224

    Article  CAS  Google Scholar 

  • Zainal NA, Zulkifli NWM, Gulzar M, Masjuki HH (2018) A review on the chemistry, production, and technological potential of bio-based lubricants. Renew Sustain Energy Rev 82:80–102

    Article  CAS  Google Scholar 

  • Zezza F, Macrì F (1995) Marine aerosol and stone decay. Sci Total Environ 167:123–143

    Article  CAS  Google Scholar 

  • Zghaid M, Noack Y, Boukla M, Benyaich F (2009) Atmospheric particulate pollution in Kenitra (Morocco); Pollution atmospherique particulaire dans la ville de Kenitra (Maroc). Pollution Atmospherique 13:

  • Zhu Y, Huang L, Li J et al (2018) Sources of particulate matter in China: insights from source apportionment studies published in 1987–2017. Environ Int 115:343–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the PHC-Tassili, a cooperation program between Algeria and France.

Funding

This work was supported by the PHC Tassili project (Hubert Curien Tassili Partnership) referenced under number 16MDU969, a cooperation program between Algeria and France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hocine Ali-Khodja.

Ethics declarations

Ethics approval and consent to participate

This study did not require ethics approval. Informed consent was obtained from all individual participants included in the study.

Consent for publication

Consent to publish has been received from all participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8.66 MB)

Supplementary file2 (XLSX 96 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidja, L., Ali-Khodja, H., Khardi, S. et al. Source apportionment of PM2.5 and their associated metallic elements by positive matrix factorization at a traffic site in Constantine, Algeria. Air Qual Atmos Health 15, 2137–2155 (2022). https://doi.org/10.1007/s11869-022-01241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-022-01241-9

Keywords

Navigation