Skip to main content
Log in

Selective detection of the inorganics NOx, SO2, and H2S in the presence of volatile BTEX contaminants toluene, benzene, and xylene

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

We demonstrate the highly selective detection of the inorganics NOx (NO, NO2), SO2, and H2S in the presence of toluene, benzene, and xylene using nanostructure metal-oxide-decorated interfaces. This selectivity can be obtained for sensors whose sensitivities are varied for a diversity of nanostructured metal oxides which are applied to a porous silicon (PS) interface. We focus on NOx and SO2 and include additional new evaluations for the response to H2S. In all cases, the response to these inorganic analytes strongly dominates that for toluene, benzene, and xylene. The responses are also consistent with the recently developing inverse hard/soft acid/base concept. The nanostructure metal-oxide-decorated PS conductometric sensors are found to have selectivity ratios well in excess of 104:1 for toluene and benzene and well in excess of 103:1 for xylene. The dominance of the response of these small inorganic sulfur and nitrogen compounds has important implications for the monitoring of significant contaminants associated with the venting and flaring of natural gas pits, as they can be present in oil and gas formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aleksandropoulou V, Torseth K, Lazaridis M (2012) The effect of forest fires in emissions of biogenic volatile organic compounds and windblown dust over urban areas. Air Qual Atmos Health 6:277–294. doi:10.1007/s11869-012-0170-y

    Article  Google Scholar 

  • Baker C, Gole JL (2014) Interface modifications of porous silicon for chemical sensor applications. JSM Nanotechnol Nanomed 2:1021–1032

    Google Scholar 

  • Baker C, Laminack W, Gole JL (2015) Sensitive and selective detection of H2S and application in the presence of toluene, benzene, and xylene. Sensors Actuators B Chem 212:28–34. doi:10.1016/j.snb.2015.01.123

    Article  CAS  Google Scholar 

  • Baratto C, Faglia G, Comini E et al (2001) A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors Actuators B Chem 77:62–66. doi:10.1016/S0925-4005(01)00673-6

    Article  CAS  Google Scholar 

  • Boarino L, Baratto C, Geobaldo F et al (2000) NO2 monitoring at room temperature by a porous silicon gas sensor. Mater Sci Eng B 69–70:210–214. doi:10.1016/S0921-5107(99)00267-6

    Article  Google Scholar 

  • Chang S-C (1979) Thin-film semiconductor NOx sensor. IEEE Trans Electron Devices 26:1875–1880. doi:10.1109/T-ED.1979.19790

    Article  Google Scholar 

  • Chang S-C (1980) Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J Vac Sci Technol 17:366–369. doi:10.1116/1.570389

    Article  CAS  Google Scholar 

  • Choinière Y, Munroe JA (1993) Air quality inside livestock barns. In: Ont. Minist. Agric. Food Rural Aff. http://www.omafra.gov.on.ca/english/livestock/swine/facts/93-001.htm. Accessed 7 Nov 2014

  • Donald JM, Hooper K, Hopenhayn-Rich C (1991) Reproductive and developmental toxicity of toluene: a review. Environ Health Perspect 94:237–244

    Article  CAS  Google Scholar 

  • Driver L, Freedman E (1993) Report to congress on hydrogen sulfide air emissions associated with the extraction of oil and natural gas. Final report. Environmental protection agency, Research Triangle Park, NC (United States). Office of Air Quality Planning and Standards

  • Durmusoglu E, Taspinar F, Karademir A (2010) Health risk assessment of BTEX emissions in the landfill environment. J Hazard Mater 176:870–877. doi:10.1016/j.jhazmat.2009.11.117

    Article  CAS  Google Scholar 

  • Gole JL (2015) Increasing energy efficiency and sensitivity with simple sensor platforms. Talanta 132:87–95. doi:10.1016/j.talanta.2014.08.038

    Article  CAS  Google Scholar 

  • Gole JL, Laminack WI (2012) General approach to design and modeling of nanostructure modified semiconductor and nanowire interfaces for sensor and microreactor applications. In: Korotcenkov G (ed) Chemical sensors simulation and modeling volume 3: solid-state devices, 1st edn. Momentum Press, pp 87–136

  • Gole JL, Laminack WI (2014) A variable response phosphine sensing matrix based on nanostructure treated p and n-type porous silicon interfaces. IEEE Sensors J 14:2731–2738. doi:10.1109/JSEN.2014.2316117

    Article  CAS  Google Scholar 

  • Gole JL, Ozdemir S (2010) Nanostructure-directed physisorption vs chemisorption at semiconductor interfaces: the inverse of the HSAB concept. ChemPhysChem 11:2573–2581. doi:10.1002/cphc.201000245

    Article  CAS  Google Scholar 

  • Gole JL, Veje E, Egeberg RG et al (2006) Optical analysis of the light emission from porous silicon: a hybrid polyatom surface-coupled fluorophor. J Phys Chem B 110:2064–2073. doi:10.1021/jp0555302

    Article  CAS  Google Scholar 

  • Gole JL, Ozdemir S, Osburn TB (2010) Novel concept for the formation of sensitive, selective, rapidly responding conductometric sensors. ECS Trans 33:239–244. doi:10.1149/1.3484127

    Article  CAS  Google Scholar 

  • Gole JL, Goude EC, Laminack W (2012) Nanostructure-driven analyte–interface electron transduction: a general approach to sensor and microreactor design. ChemPhysChem 13:549–561. doi:10.1002/cphc.201100712

    Article  CAS  Google Scholar 

  • Heiland G (1981) Homogeneous semiconducting gas sensors. Sensors Actuators 2:343–361. doi:10.1016/0250-6874(81)80055-8

    Article  Google Scholar 

  • Hubbell B (2011) Understanding urban exposure environments: new research directions for informing implementation of U.S. air quality standards. Air Qual Atmos Health 5:259–267. doi:10.1007/s11869-011-0153-4

    Article  Google Scholar 

  • Jalkanen T, Torres-Costa V, Salonen J et al (2009) Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors. Opt Express 17:5446–5456. doi:10.1364/OE.17.005446

    Article  CAS  Google Scholar 

  • Kharitonov SA, Barnes PJ (2002) Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 7:1–32. doi:10.1080/13547500110104233

    Article  CAS  Google Scholar 

  • Ku HH (1966) Notes on the use of propagation of error formulas. J Res Natl Bur Stand C Eng Instrum 70C:263–273

    Article  Google Scholar 

  • Laminack W, Pouse N, Gole JL (2012) Dynamic interaction of NO2 with a nanostructure modified porous silicon matrix: acidity, sensor response, and the competition for donor level electrons. ECS J Solid State Sci Technol 1:Q25–Q34. doi:10.1149/2.002202jss

    Article  CAS  Google Scholar 

  • Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta 347:25–39. doi:10.1016/j.cccn.2004.04.023

    Article  CAS  Google Scholar 

  • Morrison SR (1981) Semiconductor gas sensors. Sensor Actuators 2:329–341. doi:10.1016/0250-6874(81)80054-6

    Article  Google Scholar 

  • Morrison SR (1987) Selectivity in semiconductor gas sensors. Sensor Actuators 12:425–440

    Article  CAS  Google Scholar 

  • Ozdemir S, Gole JL (2007) The potential of porous silicon gas sensors. Curr Opin Solid State Mater Sci 11:92–100. doi:10.1016/j.cossms.2008.06.003

    Article  CAS  Google Scholar 

  • Ozdemir S, Gole JL (2010) A phosphine detection matrix using nanostructure modified porous silicon gas sensors. Sensor Actuators B Chem 151:274–280. doi:10.1016/j.snb.2010.08.016

    Article  CAS  Google Scholar 

  • Ozdemir S, Osburn TB, Gole JL (2011) Nanostructure modified gas sensor detection matrix for NO transient conversion of NO to NO2. J Electrochem Soc 158:J201–J207. doi:10.1149/1.3583368

    Article  CAS  Google Scholar 

  • Pancheri L, Oton CJ, Gaburro Z et al (2003) Very sensitive porous silicon NO2 sensor. Sensor Actuators B Chem 89:237–239. doi:10.1016/S0925-4005(02)00471-9

    Article  CAS  Google Scholar 

  • Peng C, Luttmann-Gibson H, Zanobetti A, et al. (2015) Air pollution influences on exhaled nitric oxide among people with type II diabetes. Air Qual Atmosphere Health 1–9. doi: 10.1007/s11869-015-0336-5

  • Rosias PPR, Dompeling E, Hendriks HJE et al (2004) Exhaled breath condensate in children: pearls and pitfalls. Pediatr Allergy Immunol 15:4–19. doi:10.1046/j.0905-6157.2003.00091.x

    Article  Google Scholar 

  • Sailor MJ (1997) Sensor applications of porous silicon. In: Canham L (ed) Properties of porous silicon. INSPEC, London, pp 364–370

    Google Scholar 

  • Sberveglieri G, Groppelli S, Nelli P (1991) Highly sensitive and selective NOx and NO2 sensor based on Cd-doped SnO2 thin films. Sensor Actuators B Chem 4:457–461. doi:10.1016/0925-4005(91)80151-9

    Article  CAS  Google Scholar 

  • Williams G, Coles GSV (1993) NOx response of tin dioxide based gas sensors. Sensor Actuators B Chem 16:349–353. doi:10.1016/0925-4005(93)85208-R

    Article  CAS  Google Scholar 

  • World Health Organization Occupational and Environmental Health Team (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment

  • Zeidler MR, Kleerup EC, Tashkin DP (2004) Exhaled nitric oxide in the assessment of asthma. Curr Opin Pulm Med 10:31–36

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the help of William Laminack in the collection of data for this paper.

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Gole.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, C., Gole, J.L. Selective detection of the inorganics NOx, SO2, and H2S in the presence of volatile BTEX contaminants toluene, benzene, and xylene. Air Qual Atmos Health 9, 411–419 (2016). https://doi.org/10.1007/s11869-015-0350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-015-0350-7

Keywords

Navigation