Skip to main content
Log in

Non-Archimedean analysis and a wave-type pseudodifferential equation on finite adèles

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this work the ring of finite adèles \({\mathbb {A}}_f\) of the rational numbers \({\mathbb {Q}}\) is obtained as a completion of \({\mathbb {Q}}\) with respect to a certain non-Archimedean metric related to the second Chebyshev function, which allows us to represent any finite adèle as a convergent series, generalizing m-adic analysis. This polyadic analysis allows us to introduce a novel pseudodifferential operator \(D^{\alpha }\) on \(L^2({\mathbb {A}}_f)\) of fractional differentiation, similar to the Vladimirov operator on the p-adic numbers. The operator \(D^{\alpha }\) is a positive selfadjoint unbounded operator whose spectrum \(\sigma (D^{\alpha })\) is essential and it consists of a countable number of eigenvalues, which converges to zero, and zero. Moreover, a sort of multiresolution analysis on \({\mathbb {A}}_f\) provides us with a wavelet basis which is an orthonormal basis of eigenfunctions of \(D^{\alpha }\) as well. The Cauchy problem of a wave-type pseudodifferential equation

$$\begin{aligned} u_{tt}(x,t)+D^{\alpha }_x u(x,t) =F(x,t), \qquad (x \in {\mathbb {A}}_f), \end{aligned}$$

with appropriate initial conditions \(u(x,0)=f(x), u_t(x,0)=g(x),\) and external force F(xt), is solved separating variables and using the Fourier expansion of functions in \(L^2({\mathbb {A}}_f)\), with respect to the wavelet basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aguilar-Arteaga, V.A., Estala-Arias, S.: Pseudodifferential operators and Markov processes on adèles. p-Adic Numbers Ultrametric Anal. Appl. 11(2), 89–113 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Karwowski, W.: A random walk on p-adics—the generator and its spectrum. Stoch. Process. Appl. 53(1), 1–22 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Khrennikov, A.Y., Shelkovich, V.M.: Theory of \(p\)-Adic Distributions. LMS, Lectures Notes Series 370. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  4. Altaisky, M.V., Sidharth, B.G.: \(p\)-Adic physics below and above planck scales. Chaos Solitons Fractals 10(2–3), 167–176 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Ansari, A., Berendzen, J., Bowne, S.F., Frauenfelder, H., Iben, I.E.T., Sauke, T.B., Shyamsunder, E., Young, R.D.: Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA 82, 5000–5004 (1985)

    Google Scholar 

  6. Antoniouk, A.V., Oleschko, K., Kochubei, A.N., Khrennikov, A.Y.: A stochastic \(p\)-adic model of the capillary flow in porous random medium. Physica A Stat. Mech. Appl. 505, 763–777 (2018)

    MathSciNet  Google Scholar 

  7. Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York-Heidelberg (1976)

    MATH  Google Scholar 

  8. Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V., Osipov, V.A.: p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes. J. Phys. A Math. Gen. 35(2), 177–189 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Avetisov, V.A., Bikulov, A.H., Osipov, V.A.: p-adic description of characteristic relaxation in complex systems. J. Phys. A Math. Gen. 36(15), 4239–4246 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Avetisov, V.A., Bikulov, A.H., Osipov, V.A.: p-adic models of ultrametric diffusion in the conformal dynamics of macromolecules. Proc. Setklov Inst. Math. 2452(1), 48–57 (2004)

    MATH  Google Scholar 

  11. Benedetto, J.J., Benedetto, R.L.: A wavelet theory for local fields and related groups. J. Geom. Anal. 14(3), 423–456 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Bruhat, F.: Distributions sur un groupe localement compact et applications à létude des représentations des groupes p-adiques. Bull. Soc. Math. France 89, 43–75 (1961)

    MathSciNet  MATH  Google Scholar 

  13. Chuong, N.M., Co, N.V.: The Cauchy problem for a class of pseudodifferential equations over \(p\)-adic field. J. Math. Anal. Appl. 340, 629–645 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Chuong, N.M., Egorov, YuV, Khrennikov, A., Meyer, Y., Mumford, D. (eds.): Harmonic, Wavelet and p-Adic Analysis. World Scientific, Singapore (2007)

    Google Scholar 

  15. Cruz-López, M.: On \({\mathbb{Q}}\)-invariant adèle-valued functions on \({\mathbb{A}}\). Bol. Soc. Mat. Mex. 3(14), 75–84 (2008)

    MATH  Google Scholar 

  16. Cruz-López, M., Estala-Arias, S.: Invariant ultrametrics and Markov processes on the finite adèle ring of \({\mathbb{Q}}\). p-Adic Numbers Ultrametric Anal. Appl. 8(2), 89–114 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Dragovich, B., Radyno, Ya., Khrennikov, A.: Distributions on adeles. J. Math. Sci. 142(3), 2105–2112 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Dragovich, B., Khrennikov, AYu., Kozyrev, S.V., Volovich, I.V., Zelenov, E.I.: p-Adic mathematical physics: the first 30 years. p-Adic Numbers Ultrametric Anal. Appl. 9(2), 87–121 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Dolgopolov, M.V., Zubarev, A.P.: Some aspects of \(m\)-adic analysis and its applications to m-adic stochastic processes. p-Adic Numbers Ultrametric Anal. Appl. 3(1), 39–51 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Estala-Arias, S.: Pseudodifferential Operators and Markov Processes on Certain Totally Disconnected Groups. Manuscript submitted for publication

  21. Evdokimov, S.: Haar multiresolution analysis and Haar bases on the ring of rational adèles. J. Math. Sci. 192(2), 215–219 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Furstenberg, H.: On the infinitude of primes. Am. Math. Mon. 62(5), 353 (1955)

    MathSciNet  MATH  Google Scholar 

  23. Fenimore, P.W., Frauenfelder, H., McMahon, B.H.: Myoglobin, the hydrogen atom of biology and paradigm of complexicity. Proc. Natl. Acad. Sci. USA 100(15), 8615–8617 (2003)

    Google Scholar 

  24. Gelfand, I.M., Graev, M.I., Pyatetskii-Shapiro, I.I., Hirsch, K.A.: Representation Theory and Automorphic Functions, 1st edn. W. B. Saunders, Philadelphia (1969)

    Google Scholar 

  25. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Springer, Berlin (1970)

    MATH  Google Scholar 

  26. Igusa, J.I.: An Introduction to the Theory of Local Zeta Functions. AMS/IP Studies in Advanced Mathematics. 14. American Mathematical Society, Providence, RI; International Press, Cambridge, MA (2000)

  27. Khrennikov, A.Y., Radyno, Y.V.: On adelic analogue of Laplacian. Proc. Jangjeon Math. Soc. 6(1), 1–18 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Kochubei, A.N.: Pseudo-differential Equations and Stochastics Over Non-Archimedean Fields. Monographs and Textbooks in Pure and Applied Mathematics, vol. 244. Marcel Dekker Inc, New York (2001)

    MATH  Google Scholar 

  29. Kosyak, A.V., Khrennikov, A.Y., Shelkovich, V.M.: Pseudodifferential operators on adèles and wavelet bases. (Russian) Dokl. Akad. Nauk 444 (2012), no. 3, 253–257; translation in Dokl. Math. 85, no. 3, 358–362 (2012)

  30. Lang, S.: Algebraic Number Theory. Graduate Texts in Mathematics, vol. 110, 2nd edn. Springer, New York (1994)

    MATH  Google Scholar 

  31. Manin, Y.I.: Reflections on Arithmetical Physics. Conformal Invariance and String Theory (Poiana Braov, 1987), 293–303, Perspect. Phys. Academic Press, Boston (1989)

    Google Scholar 

  32. McFeat, R.B.: Geometry of Numbers in Adele Spaces. Instytut Matematyczny Polskiej Akademi Nauk, Warszawa (1971)

    MATH  Google Scholar 

  33. Mackey, G.W.: Harmonic analysis as the exploitation of symmetry—a historical survey. Bull. Am. Math. Soc. (N.S.) 3(1), 543–698 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Ramakrishnan, D., Valenza, R.J.: Fourier Analysis on Number Fields. Springer, New York (1999)

    MATH  Google Scholar 

  35. Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicist. Rev. Mod. Phys. 58(3), 765–788 (1986)

    MathSciNet  Google Scholar 

  36. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional analysis. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  37. Robert, A.: Des adèles, pourquoi? Enseign. Math. 20, 133–145 (1974)

    MathSciNet  MATH  Google Scholar 

  38. Saloff-Coste, L.: Opérateurs pseudo-différentiels sur certains groupes totalement discontinus. Stud. Math. 83(3), 205–228 (1986)

    MATH  Google Scholar 

  39. Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Springer, New York (1999)

    MATH  Google Scholar 

  40. Sergei, F.: Lukomskii multiresolution analysis on zero-dimensional Abelian groups and wavelets bases. Sb. Math. 201, 669 (2010)

    MathSciNet  Google Scholar 

  41. Tate, J.: Fourier Analysis on Algebraic Number Fields and Hecke zeta functions, in Algebraic Number Theory. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  42. Urban, R.: Markov processes on the adeles and Dedekind’s zeta function. Stat. Prob. Lett. 82, 1583–1589 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Varadarajan, V.S.: Reflections on Quanta, Symmetries, and Supersymmetries. Springer, New York (2011)

    MATH  Google Scholar 

  44. Vladimirov, V.S.: Generalized functions over the field of \(p\)-adic numbers. Usp. Mat. Nauk. 43(5), 17–53 (1988)

    MathSciNet  Google Scholar 

  45. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-adic Analysis and Mathematical Physics. Series on Soviet and East European Mathematics, vol. 1. World Scientific Publishing Co.Inc, River Edge (1994)

    MATH  Google Scholar 

  46. Volovich, I.V.: Number theory as the ultimate physical theory. p-Adic Numbers Ultrametric Anal. Appl. 2(1), 77–87 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Volovich, I.V.: p-Adic string. Class. Quantum Gravity 4(4), 83–87 (1987)

    MathSciNet  Google Scholar 

  48. Weil, A.: Basic Number Theory, 3rd edn. Springer, Berlin (1974)

    MATH  Google Scholar 

  49. Wilson, J.S.: Profinite Groups. London Mathematical Society Monographs. New Series, vol. 19. The Clarendon Press, New York (1998)

    MATH  Google Scholar 

  50. Yasuda, K.: Markov processes on the adeles and Chebyshev function. Stat. Prob. Lett. 83, 238–244 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Zúñiga-Galindo, W.A.: Pseudodifferential Equations Over Non-Archimedean Spaces. Springer International Publishing, Switzerland (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Estala-Arias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Arteaga, V.A., Cruz-López, M. & Estala-Arias, S. Non-Archimedean analysis and a wave-type pseudodifferential equation on finite adèles. J. Pseudo-Differ. Oper. Appl. 11, 1139–1181 (2020). https://doi.org/10.1007/s11868-020-00343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-020-00343-1

Keywords

Mathematics Subject Classification

Navigation