Skip to main content
Log in

On the Kähler form of complex \(L^{p}\) space and its Lagrangian subspaces

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this article, we obtain the Kähler forms for complex \(L^{p}\) spaces, \(1\le p<\infty \), and we find and describe explicitly the set of all Lagrangian subspaces of the complex \(L^{p}\) space. The results in this article show that the Lagrangians of complex \(L^{2}\) space are distinct from those of complex \(L^{p}\) spaces for \(1\le p<\infty \), \(p\ne 2\). As an application, the symplectic structure determined by the Kähler form can be used to determine the symplectic form of the complex Holmes–Thompson volumes restricted on complex lines in integral geometry of complex \(L^{p}\) space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikou, T.: On complex finsler manifolds. Rep. Kagoshima Univ. 24, 9–25 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Bao, D.D.-W.: A Sampler of Riemann–Finsler Geometry, vol. 50. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Bernig, A., Joseph, H.G.F.: Hermitian integral geometry. Ann. Math. 173(2), 907–945 (2011)

    MATH  Google Scholar 

  4. Chern, S.-S.: Finsler geometry is just Riemannian geometry without the quadratic equation. Notices Am. Math. Soc. 43(9), 959–963 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Chern, S.S., Shen, Z.: Riemann–Finsler Geometry. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  6. Chunping, Z., Tongde, Z.: Horizontal Laplace operator in real Finsler vector bundles. Acta Mathematica Scientia 28(1), 128–140 (2008)

    Article  MATH  Google Scholar 

  7. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Foucart, S., Lai, M.-J.: Sparsest solutions of underdetermined linear systems via \(q\)-minimization for \(0 < q < =1\). Appl. Comput. Harmonic Anal. 26(3), 395–407 (2009)

  9. Klain, D.: Even valuations on convex bodies. Trans. Am. Math. Soc. 352(1), 71–93 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Kobayashi, S., Sūgakkai, N.: Differential Geometry of Complex Vector Bundles. Iwanami Shoten, Tokyo (1987)

    Book  MATH  Google Scholar 

  11. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 81. Wiley, New York (1989)

    MATH  Google Scholar 

  12. Lai, M.-J., Liu, Y.: The null space property for sparse recovery from multiple measurement vectors. Appl. Comput. Harmonic Anal. 30(3), 402–406 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Lai, M.J., Liu, Y.: The probabilistic estimates on the largest and smallest \(q\)-singular values of random matrices. Math. Comput. (2014). doi:10.1090/S0025-5718-2014-02895-0

  14. Liu, Y.: On the lagrangian subspaces of complex minkowski space. J. Math. Sci. Adv. Appl. 7(2), 87–93 (2011)

  15. Liu, Y.: On the range of cosine transform of distributions for torus–invariant complex Minkowski spaces. Far East J. Math. Sci. 39(2), 733–753 (2010)

    Google Scholar 

  16. Liu, Y.: On explicit holmes-thompson area formula in integral geometry. Accepted for publication in Int. Math. Forum, arXiv:1009.5057 (2011)

  17. Munteanu, G.: Complex Finsler spaces. In: Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Fundamental Theories of Physics, vol. 141, pp. 55–90. Springer (2004)

  18. Álvarez Paiva, J.C., Fernandes, E., et al.: Crofton formulas in projective Finsler spaces. Electron. Res. Announc. Am. Math. Soc 4, 91–100 (1998)

    MATH  Google Scholar 

  19. Rund, H.: The Differential Geometry of Finsler Spaces. Springer, Berlin (1959)

    Book  MATH  Google Scholar 

  20. Sakai, T.: Riemannian Geometry. Translation of Mathematical Monographs, vol. 149. American Mathematical Society, Providence, RI (1996)

  21. Santaló, L.A.: Integral geometry in Hermitian spaces. Am. J. Math. 74(2), 423–434 (1952)

  22. Schneider, R.: On integral geometry in projective Finsler spaces. J. Contemp. Math. Anal. 37(1), 30–46 (2002)

    MathSciNet  Google Scholar 

  23. Weisberg, H.: Central Tendency and Variability, 83rd edn. Sage, California (1992)

    Google Scholar 

  24. Xia, Y.: Newton’s method for the ellipsoidal \(l_p\) norm facility location problem. In: Computational Science-ICCS 2006, volume 3991, pp. 8–15 (2006)

  25. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. 2. Springer, Berlin (1989)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. J. Fu for some helpful discussions in this subject. This work was partially supported by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. On the Kähler form of complex \(L^{p}\) space and its Lagrangian subspaces. J. Pseudo-Differ. Oper. Appl. 6, 265–277 (2015). https://doi.org/10.1007/s11868-015-0114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-015-0114-z

Keywords

Mathematics Subject Classification

Navigation