Skip to main content

Advertisement

Log in

Evaluation of Homologous Recombination Deficiency in Ovarian Cancer

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Homologous recombination deficiency (HRD) is an important biomarker guiding selection of ovarian cancer patients who will derive the most benefit from poly(ADP-ribose) polymerase inhibitors (PARPi). HRD prevents cells from repairing double-stranded DNA damage with high fidelity, PARPis limit single-stranded repair, and together these deficits induce synthetic lethality. Germline or somatic BRCA mutations represent the narrowest definition of HRD, but do not reflect all patients who will have a durable PARPi response. HRD can also be defined by its downstream consequences, which are measured by different metrics depending on the test used. Ideally, all patients will undergo genetic counseling and germline testing shortly after diagnosis and have somatic testing sent once an adequate tumor sample is available. Should barriers to one test be higher, pursuing germline testing with reflex to somatic testing for BRCA wildtype patients or somatic testing first strategies are both evidence-based. Ultimately both tests offer complementary information, germline testing should be pursued for any patient with a history of ovarian cancer, and somatic testing is valuable at recurrence if not performed in the upfront setting. There is a paucity of data to suggest superiority of one germline or somatic assay; therefore, selection should optimize turnaround time, cost to patients, preferred result format, and logistical burden. Each clinic should implement a standard testing strategy for all ovarian cancer patients that ensures HRD status is known at the time of upfront chemotherapy completion to facilitate comprehensive counseling about anticipated maintenance PARPi benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. González-Martín A, Harter P, Leary A, Lorusso D, Miller RE, Pothuri B, et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO clinical practice guideline for diagnosis, treatment, and follow-up. Ann Oncol. 2023;S0923–7534(23):00797–4. https://doi.org/10.1016/j.annonc.2023.07.011.

    Article  CAS  Google Scholar 

  2. González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391–402. https://doi.org/10.1056/NEJMoa1910962.

    Article  PubMed  Google Scholar 

  3. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379(26):2495–505. https://doi.org/10.1056/NEJMoa1810858.

    Article  CAS  PubMed  Google Scholar 

  4. • Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol. 2020;31(12):1606–1622. https://doi.org/10.1016/j.annonc.2020.08.2102. This reference is of importance as it outlines the European Society for Medical Oncology’s finalized recommendations for homologous recombination deficiency testing based on expert committee review of recently published literature and their strength of evidence.

  5. Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen WJ, et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol. 2018;2:1–13.

    Article  Google Scholar 

  6. Beggs R, Yang ES. Targeting DNA repair in precision medicine. Adv Protein Chem Struct Biol. 2019;115:135–55.

    Article  PubMed  Google Scholar 

  7. Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022;36(5–6):278–93. https://doi.org/10.1101/gad.349431.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8:362ps317.

  9. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:3785–90.

    Article  CAS  Google Scholar 

  10. Quesada S, Fabbro M, Solassol J. Toward more comprehensive homologous recombination deficiency assays in ovarian cancer, part 1: technical considerations. Cancers. 2022;14(5):1132. https://doi.org/10.3390/cancers14051132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019;9(2):210–9. https://doi.org/10.1158/2159-8290.CD-18-0715.

    Article  CAS  PubMed  Google Scholar 

  12. Bernards SS, Pennington KP, Harrell MI, Agnew KJ, Garcia RL, Norquist BM, Swisher EM. Clinical characteristics and outcomes of patients with BRCA1 or RAD51C methylated versus mutated ovarian carcinoma. Gynecol Oncol. 2018;148(2):281–5. https://doi.org/10.1016/j.ygyno.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  13. Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep. 2020;10(1):2757. https://doi.org/10.1038/s41598-020-59671-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alldredge J, Randall L. Germline and somatic tumor testing in gynecologic cancer care. Obstet Gynecol Clin North Am. 2019;46(1):37–53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ewing A, Meynert A, Churchman M, Grimes GR, Hollis RL, C. Simon Herrington, et al. Structural variants at the BRCA1/2 loci are a common source of homologous repair deficiency in high-grade serous ovarian carcinoma. Clin Can Res. 2021;27(11):3201–14.

  16. Mangogna A, Munari G, Pepe F, Maffii E, Giampaolino P, Ricci G, et al. Homologous recombination deficiency in ovarian cancer: from the biological rationale to current diagnostic approaches. J of Pers Med. 2023 Feb 1;13(2):284. Available from: https://www.mdpi.com/2075-4426/13/2/284.

  17. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20:764–75.

    Article  CAS  PubMed  Google Scholar 

  18. Toh M, Ngeow J. Homologous recombination deficiency: cancer predispositions and treatment implications. Oncologist. 2021;26(9).

  19. • Kalachand RD, Stordal B, Madden S, Chandler B, Cunningham J, Goode EL, et al. BRCA1 promoter methylation and clinical outcomes in ovarian cancer: an individual patient data meta-analysis. J Natl Cancer Inst. 2020;112:1190–1203. This reference is of importance because it evaluates methodological and mechanistic differences in BRCA methylation assays that may be contributing to heterogeneous results noted in prior studies.

  20. The Cancer Genome Atlas (TCGA) Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474: 609−15.

  21. Baldwin AL, Cook-Deegan R. Constructing narratives of heroism and villainy: case study of Myriad’s BRACAnalysis((R)) compared to Genentech’s Herceptin((R)). Genome Med. 2013;5:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nelson HD, Pappas M, Cantor A, Haney E, Holmes R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2019;322:666–85.

    Article  PubMed  Google Scholar 

  23. BRACAnalysis CDx ® Technical Information. Available from: https://s3.amazonaws.com/myriad-web/BRACAnalysisCDxTS.pdf.

  24. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat. 2018;39:593–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellison G, Ahdesmaki MJ, Luke S, Waring P, Wallace A, Wright R, et al. An evaluation of the challenges to developing tumor BRCA1 and BRCA2 testing methodologies for clinical practice. Hum Mutat. 2017;39(3):394–405.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Domchek SM, Aghajanian C, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, et al. Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol Oncol. 2016;140(2):199–203. https://doi.org/10.1016/j.ygyno.2015.12.020.

    Article  CAS  PubMed  Google Scholar 

  27. •• Mohyuddin GR, Aziz M, Britt A, Wade L, Sun W, Baranda J, et al. Similar response rates and survival with PARP inhibitors for patients with solid tumors harboring somatic versus germline BRCA mutations: a meta-analysis and systematic review. BMC Cancer. 2020;20(1):507. https://doi.org/10.1186/s12885-020-06948-5. This reference is of great importance as it provides a systematic review and meta-analysis of major PARPi trials in the past decade and analyses differences in outcomes between germline and somatic BRCA mutation status.

  28. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75–87. https://doi.org/10.1016/S1470-2045(16)30559-9.

    Article  CAS  PubMed  Google Scholar 

  29. Sokol ES, Pavlick D, Khiabanian H, Frampton GM, Ross JS, Gregg JP, et al. Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis Oncol. 2020;4:442–65.

    Article  PubMed  Google Scholar 

  30. Ngoi NYL, Tan DSP. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it? ESMO Open. 2021;6(3): 100144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu CC, Qiu W, Juang CS, Mansukhani MM, Halmos B, Su GH. Mutant allele specific imbalance in oncogenes with copy number alterations: occurrence, mechanisms, and potential clinical implications. Cancer Lett. 2017;384:86–93.

    Article  CAS  PubMed  Google Scholar 

  32. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107:1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012;2:366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mills GB, Timms KM, Reid JE, Gutin AS, Krivak TC, Hennessy B, et al. Homologous recombination deficiency score shows superior association with outcome compared with its individual score components in platinum-treated serous ovarian cancer. Gynecol Oncol. 2016;141:2–3.

    Article  Google Scholar 

  35. Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16:475.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Fumagalli C, Betella I, Ranghiero A, Guerini-Rocco E, Bonaldo G, Rappa A, et al. In-house testing for homologous recombination repair deficiency (HRD) testing in ovarian carcinoma: a feasibility study comparing AmoyDx HRD Focus Panel with Myriad MyChoiceCDx Assay. Pathologica. 2022;114:288–294. This reference is of importance because it provides both study design and outcomes for a decentralized HRD testing alternative to FDA-approved genomic scar assays.

  38. Buisson A, Saintigny P, Pujade-Lauraine E, Montoto-Grillot C, Vacirca D, Barberis M, et al. A deep learning solution for detection of homologous recombination deficiency in ovarian cancer using low pass-whole genome sequencing: evaluation of analytical performance. J Clin Oncol. 2022;40:16_suppl:e17599–e17599. https://doi.org/10.1200/JCO.2022.40.16_suppl.e17599.

  39. Doig KD, Fellowes AP, Fox SB. Homologous recombination repair deficiency: an overview for pathologists. Mod Pathol. 2023;36(3): 100049. https://doi.org/10.1016/j.modpat.2022.100049.

    Article  PubMed  Google Scholar 

  40. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. https://doi.org/10.1200/JCO.2022.40.16_suppl.e1759910.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cosmic. COSMIC. Sanger.ac.uk. COSMIC; 2019. Available from: https://cancer.sanger.ac.uk/cosmic.

  42. Gulhan DC, Lee JJ, Melloni GEM, Cortés-Ciriano I, Park PJ. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat Genet. 2019;51(5):912–9. https://doi.org/10.1038/s41588-019-0390-2.

    Article  CAS  PubMed  Google Scholar 

  43. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23(4):517–25. https://doi.org/10.1038/nm.4292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paulet L, Trecourt A, Leary A, Peron J, Descotes F, Devouassoux-Shisheboran M, et al. Cracking the homologous recombination deficiency code: how to identify responders to PARP inhibitors. Eur J Cancer. 2022;166:87–99.

    Article  CAS  PubMed  Google Scholar 

  45. van Wijk LM, Vermeulen S, Meijers M, van Diest MF, Ter Haar NT, de Jonge MM, et al. The RECAP test rapidly and reliably identifies homologous recombination-deficient ovarian carcinomas. Cancers (Basel). 2020;12(10):2805. https://doi.org/10.3390/cancers12102805.

    Article  CAS  PubMed  Google Scholar 

  46. Garg V, Oza AM. Assessment of homologous recombination deficiency in ovarian cancer. Clin Cancer Res. 2023;CCR-23-0563. https://doi.org/10.1158/1078-0432.CCR-23-0563.

  47. Cruz C, Castroviejo-Bermejo M, Gutiérrez-Enríquez S, Llop-Guevara A, Ibrahim YH, Gris-Oliver A, et al. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann Oncol. 2018;29(5):1203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoppe MM, Jaynes P, Wardyn JD, Upadhyayula SS, Tan TZ, Lie S, et al. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med. 2021;13(5): e13366. https://doi.org/10.15252/emmm.202013366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. •• Pikkusaari S, Tumiati M, Virtanen A, Oikkonen J, Li Y, Perez-Villatoro F, et al. Functional homologous recombination assay on FFPE specimens of advanced high-grade serous ovarian cancer predicts clinical outcomes. Clin Cancer Res. 2023;29(16):3110–23. https://doi.org/10.1158/1078-0432.CCR-22-3156. This reference is of outstanding importance because it provides validation of a functional assay of RAD51 activity that can be performed on formalin-fixated paraffin-embedded tissue specimens, which significantly increases feasibility to prior assays that required irradiation of fresh tumor tissue specimens.

  50. Oza AM, Tinker AV, Oaknin A, Shapira-Frommer R, McNeish IA, Swisher EM, et al. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: integrated analysis of data from Study 10 and ARIEL2. Gynecol Oncol. 2017;147(2):267–75. https://doi.org/10.1016/j.ygyno.2017.08.022.

    Article  CAS  PubMed  Google Scholar 

  51. Moore KN, Secord AA, Geller MA, Miller DS, Cloven N, Fleming GF, et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20(5):636–48. https://doi.org/10.1016/S1470-2045(19)30029-4.

    Article  CAS  PubMed  Google Scholar 

  52. Penson RT, Valencia RV, Cibula D, Colombo N, Leath CA III, Bidziński M, et al. Olaparib versus nonplatinum chemotherapy in patients with platinum-sensitive relapsed ovarian cancer and a germline BRCA1/2 mutation (SOLO3): a randomized phase III trial. J Clin Oncol [Internet]. 2020;38(11):1164–74. https://doi.org/10.1200/jco.19.02745.

    Article  CAS  PubMed  Google Scholar 

  53. Leath CA, Scambia G, Valencia RV, Colombo N, Cibula D, Bidzinski M, et al., editors. Overall survival by number of prior lines of chemotherapy in patients with BRCA-mutated platinum-sensitive relapsed ovarian cancer receiving olaparib treatment or non-platinum chemotherapy in SOLO3. IGCS 2022 Annual Global Meeting; 29 September-1 October 2022; New York; abstract.

  54. Kristeleit R, Lisyanskaya A, Fedenko A, Dvorkin M, de Melo AC, Shparyk Y, et al. Rucaparib versus standard-of-care chemotherapy in patients with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomized, phase 3 trial. Lancet Oncol. 2022;23(4):465–78. https://doi.org/10.1016/S1470-2045(22)00122-X.

    Article  CAS  PubMed  Google Scholar 

  55. DiSilvestro P, Banerjee S, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke GS, Gourley C, Oza A, González-Martín A, Aghajanian C, Bradley W, Mathews C, Liu J, McNamara J, Lowe ES, Ah-See ML, Moore KN; SOLO1 Investigators. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: the SOLO1/GOG 3004 trial. J Clin Oncol. 2023;41(3):609–617. https://doi.org/10.1200/JCO.22.01549.

  56. Banerjee S, Moore KN, Colombo N, Scambia G, Kim B-G, Oaknin A, et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol [Internet]. 2021;22(12):1721–31. https://doi.org/10.1016/s1470-2045(21)00531-3.

    Article  CAS  PubMed  Google Scholar 

  57. O’Malley DM, Krivak TC, Kabil N, Munley J, Moore KN. PARP inhibitors in ovarian cancer: a review. Target Oncol. 2023. https://doi.org/10.1007/s11523-023-00970-w.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gonzalez Martin AJ, Pothuri B, Vergote IB, Graybill W, Mirza MR, Mccormick C, et al. 530P PRIMA/ENGOT-OV26/GOG-3012 study: updated long-term PFS and safety. Ann Oncol [Internet]. 2022;33:S789. Available from: https://doi.org/10.1016/j.annonc.2022.07.658.

  59. Monk BJ, Parkinson C, Lim MC, O’Malley DM, Oaknin A, Wilson MK, et al. A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J Clin Oncol. 2022;40(34):3952–64. https://doi.org/10.1200/JCO.22.01003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swisher EM, Aghajanian C, O’Malley DM, Fleming GF, Kaufmann SH, Levine DA, et al. Impact of homologous recombination status and responses with veliparib combined with first-line chemotherapy in ovarian cancer in the phase 3 VELIA/GOG-3005 study. Gynecol Oncol [Internet]. 2022;164(2):245–53. https://doi.org/10.1016/j.ygyno.2021.12.003.

    Article  CAS  PubMed  Google Scholar 

  61. Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28. https://doi.org/10.1056/NEJMoa1911361.

    Article  CAS  PubMed  Google Scholar 

  62. Harter P, Mouret-Reynier MA, Pignata S, Cropet C, González-Martín A, Bogner G, et al. Efficacy of maintenance olaparib plus bevacizumab according to clinical risk in patients with newly diagnosed, advanced ovarian cancer in the phase III PAOLA-1/ENGOT-ov25 trial. Gynecol Oncol [Internet]. 2022;164(2):254–64. Available from: https://doi.org/10.1016/j.ygyno.2021.12.016.

  63. Ray-Coquard IL, Leary A, Pignata S, Cropet C, Martin AJG, Bogner G, et al. LBA29 final overall survival (OS) results from the phase III PAOLA-1/ENGOT-ov25 trial evaluating maintenance olaparib (ola) plus bevacizumab (bev) in patients (pts) with newly diagnosed advanced ovarian cancer (AOC). Ann Oncol [Internet]. 2022;33:S1396–7. Available from: https://doi.org/10.1016/j.annonc.2022.08.025.

  64. Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomized, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(9):1274–84.

    Article  CAS  PubMed  Google Scholar 

  65. Poveda A, Floquet A, Ledermann JA, Asher R, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol [Internet]. 2021;22(5):620–31. Available from: https://doi.org/10.1016/s1470-2045(21)00073-5.

  66. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. https://doi.org/10.1056/NEJMoa1611310.

    Article  CAS  PubMed  Google Scholar 

  67. Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10106):1949–61. https://doi.org/10.1016/S0140-6736(17)32440-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coleman RL, Oza A, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. O003/#557 Overall survival results from ARIEL3: a phase 3 randomized, double-blind study of rucaparib vs placebo following response to platinum-based chemotherapy for recurrent ovarian carcinoma. In: Oral abstracts (regular and late-breaking submission). BMJ Publishing Group Ltd; 2022.

  69. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol [Internet]. 2017;18(1):75–87. Available from: https://doi.org/10.1016/s1470-2045(16)30559-9.

  70. Oza AM, Lisyanskaya AS, Fedenko AA, de Melo AC, Shparik Y, Bondarenko I, et al. 518O overall survival results from ARIEL4: a phase III study assessing rucaparib vs chemotherapy in patients with advanced, relapsed ovarian carcinoma and a deleterious BRCA1/2 mutation. Ann Oncol [Internet]. 2022;33:S780. Available from: https://doi.org/10.1016/j.annonc.2022.07.646.

  71. Quesada S, Fabbro M, Solassol J. Toward more comprehensive homologous recombination deficiency assays in ovarian cancer part 2: medical perspectives. Cancers. 2022;14(4):1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stover EH, Fuh K, Konstantinopoulos PA, Matulonis UA, Liu JF. Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol Oncol. 2020.

  73. Treatment by cancer type. NCCN (National Comprehensive Cancer Network). Available from: https://www.nccn.org/guidelines/category_1.

  74. Guidelines, tools, & resources. ASCO (American Society of Clinical Oncology). Available from: https://old-prod.asco.org/practice-patients/guidelines.

  75. Randall LM, Pothuri B, Swisher EM, Diaz JP, Buchanan A, Witkop CT, et al. Multi-disciplinary summit on genetics services for women with gynecologic cancers: a Society of Gynecologic Oncology white paper. Gynecol Oncol [Internet]. 2017;146(2):217–24. Available from: https://doi.org/10.1016/j.ygyno.2017.06.002. Assessment HR. Genetic/Familial High-Risk Assessment: Breast and Ovarian.

  76. Vergote I, González-Martín A, Ray-Coquard I, Harter P, Colombo N, Pujol P, et al. European experts’ consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer. Ann Oncol. 2022;33(3):276–87. https://doi.org/10.1016/j.annonc.2021.11.013.

    Article  CAS  PubMed  Google Scholar 

  77. Frey MK, Lee SS, Gerber D, Schwartz ZP, Martineau J, Lutz K, et al. Facilitated referral pathway for genetic testing at the time of ovarian cancer diagnosis: uptake of genetic counseling and testing and impact on patient-reported stress, anxiety, and depression. Gynecol Oncol. 2020;157(1):280–6. https://doi.org/10.1016/j.ygyno.2020.01.007.

    Article  CAS  PubMed  Google Scholar 

  78. • Huepenbecker SP, Wright JD, Downer MK, Incerti D, Luhn P, Dolado I, et al. Temporal patterns and adoption of germline and somatic BRCA testing in ovarian cancer. Obstet Gynecol. 2022;140(5):758–767. https://doi.org/10.1097/AOG.0000000000004958. This reference is of importance as it demonstrates current uptake of germline and somatic BRCA testing based on data from a real-world electronic medical record database.

  79. Manrriquez E, Chapman JS, Mak J, Blanco AM, Chen LM. Disparities in genetics assessment for women with ovarian cancer: can we do better? Gynecol Oncol. 2018;149(1):84–8. https://doi.org/10.1016/j.ygyno.2017.10.034.

    Article  PubMed  Google Scholar 

  80. Uyar D, Neary J, Monroe A, Nugent M, Simpson P, Geurts JL. Implementation of a quality improvement project for universal genetic testing in women with ovarian cancer. Gynecol Oncol. 2018;149(3):565–9. https://doi.org/10.1016/j.ygyno.2018.03.059.

    Article  PubMed  Google Scholar 

  81. Mallen AR, Conley CC, Townsend MK, Wells A, Boac BM, Todd S, et al. Patterns and predictors of genetic referral among ovarian cancer patients at a National Cancer Institute-Comprehensive Cancer Center. Clin Genet. 2020;97(2):370–5. https://doi.org/10.1111/cge.13654.

    Article  CAS  PubMed  Google Scholar 

  82. Institute of Medicine (US) Roundtable on Evidence-Based Medicine; Olsen LA, Aisner D, McGinnis JM, editors. The learning healthcare system: workshop summary. Washington (DC): National Academies Press (US); 2007. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53494/. https://doi.org/10.17226/11903.

  83. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011;104(12):510–20. https://doi.org/10.1258/jrsm.2011.110180.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Eccles MP, Hrisos S, Francis J, Kaner EF, Dickinson HO, Beyer F, Johnston M. Do self-reported intentions predict clinicians’ behaviour: a systematic review. Implement Sci. 2006;1:28. https://doi.org/10.1186/1748-5908-1-28.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dusic EJ, Theoryn T, Wang C, Swisher EM, Bowen DJ; EDGE Study Team. Barriers, interventions, and recommendations: improving the genetic testing landscape. Front Digit Health. 2022;4:961128. https://doi.org/10.3389/fdgth.2022.961128.

  86. • Jorge S, McFaddin AS, Doll KM, Pennington KP, Norquist BM, Bennett RL, et al. Simultaneous germline and somatic sequencing in ovarian carcinoma: mutation rate and impact on clinical decision-making. Gynecol Oncol 2020;156:517–22. https://doi.org/10.1016/j.ygyno.2019.12.010. This reference is of importance as it demonstrates clinical and implementation outcomes for use of a simultaneous germline and somatic mutation testing strategy.

  87. • Kwon JS, Tinker AV, Santos J, Compton K, Sun S, Schrader KA, Karsan A. Germline testing and somatic tumor testing for BRCA1/2 pathogenic variants in ovarian cancer: what is the optimal sequence of testing? JCO Precis Oncol. 2022;6 This reference is of importance as its findings suggest that the optimal threshold for positivity of homologous recombination deficiency assays may need to be context-dependent in order to optimize their utility for clinical decision-making.

  88. McCuaig JM, Care M, Ferguson SE, Kim RH, Stockley TL, Metcalfe KA. Year 1: experiences of a tertiary cancer centre following implementation of reflex BRCA1 and BRCA2 tumor testing for all high-grade serous ovarian cancers in a universal healthcare system. Gynecol Oncol. 2020;158:747–53. https://doi.org/10.1016/j.ygyno.2020.06.507.

    Article  CAS  PubMed  Google Scholar 

  89. • Care M, McCuaig J, Clarke B, Grenier S, Kim RH, Rouzbahman M, Stickle N, Bernardini M, Stockley TL. Tumor and germline next generation sequencing in high grade serous cancer: experience from a large population-based testing program. Mol Oncol. 2021;15(1):80–90. https://doi.org/10.1002/1878-0261.12817. Erratum in: Mol Oncol. 2021 Jul;15(7):1970. This reference is of importance because it demonstrates the technical feasibility and scalability of a large-scale population based somatic genetic testing program.

  90. Huang M, Kamath P, Schlumbrecht M, Miao F, Driscoll D, Oldak S, et al. Identifying disparities in germline and somatic testing for ovarian cancer. Gynecol Oncol. 2019;153(2):297–303. https://doi.org/10.1016/j.ygyno.2019.03.007.

    Article  CAS  PubMed  Google Scholar 

  91. Somasegar S, Hoppenot C, Kuchta K, Sereika A, Khandekar J, Rodriguez G, et al. Outcomes after targeted treatment based on somatic tumor genetic testing for women with gynecologic cancers. Gynecol Oncol. 2021;163(2):220–8. https://doi.org/10.1016/j.ygyno.2021.08.027.

    Article  PubMed  Google Scholar 

  92. • Chandrasekaran D, Sobocan M, Blyuss O, Miller RE, Evans O, Crusz SM, et al. Implementation of multigene germline and parallel somatic genetic testing in epithelial ovarian cancer: SIGNPOST study. Cancers (Basel) [Internet]. 2021;13(17):4344. https://doi.org/10.3390/cancers13174344. This reference is of importance as it reports the number of patients who are not identified when either germline or somatic testing are not performed who otherwise may benefit from PARPis.

  93. Navigating precision medicine: the role of companion diagnostics [Internet]. SOPHiA GENETICS. 2023 [cited 2023 Dec 6]. Available from: https://www.sophiagenetics.com/science-hub/navigating-precision-medicine-the-role-of-companion-diagnostics/.

  94. • Timms K, Mills G, Perry M, Gutin A, Slavin T, Brown R, Lanchbury J. Comparison of genomic instability test scores used for predicting PARP activity in ovarian cancer. J Clin Oncol. 2020;271. This reference is of importance as it demonstrates that different methods of genomic scar score or genomic instability score calculation identify non-identical subpopulations.

  95. • How JA, Jazaeri AA, Fellman B, Daniels MS, Penn S, Solimeno C, et al. Modification of homologous recombination deficiency score threshold and association with long-term survival in epithelial ovarian cancer. Cancers. 2021;13:946. https://doi.org/10.3390/cancers13050946. This reference is of importance as its findings suggest that the optimal threshold for positivity of homologous recombination deficiency assays may need to be context-dependent in order to optimize their utility for clinical decision-making .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kondrashova O, Scott CL. Clarifying the role of EMSY in DNA repair in ovarian cancer. Cancer. 2019;125(16):2720–4. https://doi.org/10.1002/cncr.32135.

    Article  PubMed  Google Scholar 

  97. Stronach EA, Paul J, Timms KM, Hughes E, Brown K, Neff C, et al. Biomarker assessment of HR deficiency, tumor BRCA1/2 mutations, and CCNE1 copy number in ovarian cancer: associations with clinical outcome following platinum monotherapy. Mol Cancer Res. 2018;16:1103–11. https://doi.org/10.1158/1541-7786.MCR-18-0034.

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Zhang X, Gao Y, Shang C, Yu B, Wang T, et al. Development of a genomic signatures-based predictor of initial platinum-resistance in advanced high-grade serous ovarian cancer patients. Front Oncol. 2020;10: 625866. https://doi.org/10.3389/fonc.2020.625866.

    Article  PubMed  Google Scholar 

  99. •• Pujade-Lauraine E, Christinat Y, D’incalci M, Schouten P, Buisson A, Heukamp LC, et al. 201 homologous recombination deficiency testing in advanced ovarian cancer: description of the ENGOT HRD European initiative. In: Ovarian cancer. BMJ Publishing Group Ltd; 2021. This reference is of significant importance as it provides an overview of the European initiative driving development and validation of in-house homologous recombination deficiency assays (results of which are described in references 109–113, which are also of importance).

  100. Capoluongo ED, Pellegrino B, Arenare L, Califano D, Scambia G, Beltrame L, et al. Alternative academic approaches for testing homologous recombination deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open. 2022;7(5): 100585. https://doi.org/10.1016/j.esmoop.2022.100585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Loverix L, Vergote I, Busschaert P, Vanderstichele A, Boeckx B, Venken T, et al. Predictive value of the Leuven HRD test compared with Myriad MyChoice PLUS on 468 ovarian cancer samples from the PAOLA-1/ENGOT-Ov25 trial (LBA 6). Gynecol Oncol. 2022;166:S51–2.

    Article  Google Scholar 

  102. Christinat Y, Ho L, Clément S, Genestie C, Sehouli J, Cinieri S, et al. Normalized LST is an efficient biomarker for homologous recombination deficiency and olaparib response in ovarian carcinoma. JCO Precis Oncol [Internet]. 2023;(7). https://doi.org/10.1200/po.22.00555.

  103. Willing E-M, Vollbrecht C, Vössing C, Weist P, Schallenberg S, Herbst JM, et al. Development of the NOGGO GIS v1 assay, a comprehensive hybrid-capture-based NGS assay for therapeutic stratification of homologous repair deficiency driven tumors and clinical validation. Cancers (Basel) [Internet]. 2023;15(13):3445. https://doi.org/10.3390/cancers15133445

  104. Callens C, Rodrigues M, Briaux A, Frouin E, Eeckhoutte A, Pujade-Lauraine E, et al. Shallow whole genome sequencing approach to detect homologous recombination deficiency in the PAOLA-1/ENGOT-OV25 phase-III trial. Oncogene [Internet]. 2023;42(48):3556–63. Available from: https://doi.org/10.1038/s41388-023-02839-8.

  105. Leman R, Muller E, Legros A, Goardon N, Chentli I, Atkinson A, et al. Validation of the clinical use of GIScar, an academic-developed genomic instability score predicting sensitivity to maintenance olaparib for ovarian cancer. Clin Cancer Res [Internet]. 2023;29(21):4419–29. Available from: https://doi.org/10.1158/1078-0432.ccr-23-0898.

  106. Magliacane G, Brunetto E, Calzavara S, Bergamini A, Pipitone GB, Marra G, et al. Locally performed HRD testing for ovarian cancer? Yes, we can! Cancers. 2023;15:43.

    Article  CAS  Google Scholar 

  107. Heitz F, Ataseven B, Staniczok C, Denkert C, Rhiem K, Hahnen E, et al. Implementing HRD testing in routine clinical practice on patients with primary high-grade advanced ovarian cancer. Cancers (Basel) [Internet]. 2023;15(3):818. https://doi.org/10.3390/cancers15030818.

  108. Krumm N, Khasnavis NS, Radke M, Banda K, Davies HR, Pennil C, et al. Diagnosis of ovarian carcinoma Homologous recombination DNA repair deficiency from targeted gene capture oncology assays. JCO Precis Oncol [Internet]. 2023;(7). https://doi.org/10.1200/po.22.00720.

  109. Sztupinszki Z, Diossy M, Borcsok J, Prosz A, Cornelius N, Kjeldsen MK, et al. Comparative assessment of diagnostic homologous recombination deficiency–associated mutational signatures in ovarian cancer. Clin Cancer Res [Internet]. 2021;27(20):5681–7. https://doi.org/10.1158/1078-0432.ccr-21-0981.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author contribution

R.R. and M.J. wrote the main manuscript text. R.R. prepared Tables 1 and 2. All authors reviewed and contributed substantially to the content and writing of the manuscript and approved final manuscript draft for submission.

Corresponding author

Correspondence to Rubina Ratnaparkhi MD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnaparkhi, R., Javellana, M., Jewell, A. et al. Evaluation of Homologous Recombination Deficiency in Ovarian Cancer. Curr. Treat. Options in Oncol. 25, 237–260 (2024). https://doi.org/10.1007/s11864-024-01176-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-024-01176-6

Keywords

Navigation