Skip to main content

Advertisement

Log in

Cardio-oncology for Pediatric and Adolescent/Young Adult Patients

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

As chemotherapy continues to improve the lives of patients with cancer, understanding the effects of these drugs on other organ systems, and the cardiovascular system in particular, has become increasingly important. The effects of chemotherapy on the cardiovascular system are a major determinant of morbidity and mortality in these survivors. Although echocardiography continues to be the most widely used modality for assessing cardiotoxicity, newer imaging modalities and biomarker concentrations may detect subclinical cardiotoxicity earlier. Dexrazoxane continues to be the most effective therapy for preventing anthracycline-induced cardiomyopathy. Neurohormonal modulating drugs have not prevented cardiotoxicity, so their widespread, long-term use for all patients is currently not recommended. Advanced cardiac therapies, including heart transplant, have been successful in cancer survivors with end-stage HF and should be considered for these patients. Research on new targets, especially genetic associations, may produce treatments that help reduce cardiovascular morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  4. Cehic DA, Sverdlov AL, Koczwara B, Emery J, Ngo DTM, Thornton-Benko E. The importance of primary care in cardio-oncology. Curr Treat Options Oncol. 2021;22(12):107.

    Article  PubMed  Google Scholar 

  5. Bansal N, Blanco JG, Sharma UC, Pokharel S, Shisler S, Lipshultz SE. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev. 2020;39(1):55–68.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suh E, Stratton KL, Leisenring WM, Nathan PC, Ford JS, Freyer DR, et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020;21(3):421–35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128(17):1927–95.

    Article  PubMed  Google Scholar 

  9. Bansal N, Joshi C, Adams MJ, Hutchins K, Ray A, Lipshultz SE. Cardiotoxicity in pediatric lymphoma survivors. Expert Rev Cardiovasc Ther. 2021;19(11):957–74.

    Article  CAS  PubMed  Google Scholar 

  10. Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R, et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 2019;5:18.

    PubMed  PubMed Central  Google Scholar 

  11. Chow EJ, Leger KJ, Bhatt NS, Mulrooney DA, Ross CJ, Aggarwal S, et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment. Cardiovasc Res. 2019;115(5):922–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8(8):1039–58.

    Article  CAS  PubMed  Google Scholar 

  13. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229.

    Article  CAS  PubMed  Google Scholar 

  14. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008;26(22):3777–84.

    Article  PubMed  Google Scholar 

  15. Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest. 1980;65(1):128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicolay K, van der Neut R, Fok JJ, de Kruijff B. Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes. Biochimica et Biophysica Acta. 1985;819(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  17. Leonard RC, Williams S, Tulpule A, Levine AM, Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast. 2009;18(4):218–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003;108(19):2423–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ashley N, Poulton J. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs. Biochem Biophys Res Commun. 2009;378(3):450–5.

    Article  CAS  PubMed  Google Scholar 

  20. Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 2003;93(3):105–15.

    Article  CAS  PubMed  Google Scholar 

  21. Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, Lipshultz SE, et al. Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol. 2010;66(2):303–14.

    Article  CAS  PubMed  Google Scholar 

  22. De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation. 2010;121(2):276–92.

    Article  PubMed  Google Scholar 

  23. Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S. Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem. 2002;234-235(1-2):119–24.

    Article  CAS  PubMed  Google Scholar 

  24. Jurcut R, Wildiers H, Ganame J, D'Hooge J, Paridaens R, Voigt JU. Detection and monitoring of cardiotoxicity-what does modern cardiology offer? Supportive Care Cancer. 2008;16(5):437–45.

    Article  Google Scholar 

  25. Rusconi P, Gomez-Marin O, Rossique-Gonzalez M, Redha E, Marin JR, Lon-Young M, et al. Carvedilol in children with cardiomyopathy: 3-year experience at a single institution. J Heart Lung Transplant. 2004;23(7):832–8.

    Article  PubMed  Google Scholar 

  26. Lowis S, Lewis I, Elsworth A, Weston C, Doz F, Vassal G, et al. A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. Br J Cancer. 2006;95(5):571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA. Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathology. 2005;207(4):436–44.

    Article  CAS  Google Scholar 

  28. Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008;100(15):1058–67.

    Article  CAS  PubMed  Google Scholar 

  29. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 2006;41(3):389–405.

    Article  CAS  PubMed  Google Scholar 

  30. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–46.

    Article  CAS  PubMed  Google Scholar 

  31. Ong DS, Aertker RA, Clark AN, Kiefer T, Hughes GC, Harrison JK, et al. Radiation-associated valvular heart disease. J Heart Valve Dis. 2013;22(6):883–92.

    PubMed  Google Scholar 

  32. Fajardo LF, Eltringham JR, Steward JR. Combined cardiotoxicity of adriamycin and x-radiation. Lab Invest. 1976;34(1):86–96.

    CAS  PubMed  Google Scholar 

  33. Saiki H, Moulay G, Guenzel AJ, Liu W, Decklever TD, Classic KL, et al. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313(2):H392–407.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys. 2007;67(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61.

    Article  CAS  PubMed  Google Scholar 

  37. Stewart JR, Fajardo LF. Radiation-induced heart disease: an update. Prog Cardiovasc Dis. 1984;27(3):173–94.

    Article  CAS  PubMed  Google Scholar 

  38. Shapiro CL. Cancer Survivorship. N Engl J Med. 2018;379(25):2438–50.

    Article  PubMed  Google Scholar 

  39. Shapiro CL, Recht A. Side effects of adjuvant treatment of breast cancer. N Engl J Med. 2001;344(26):1997–2008.

    Article  CAS  PubMed  Google Scholar 

  40. Seddon B, Cook A, Gothard L, Salmon E, Latus K, Underwood SR, et al. Detection of defects in myocardial perfusion imaging in patients with early breast cancer treated with radiotherapy. Radiother Oncol. 2002;64(1):53–63.

    Article  PubMed  Google Scholar 

  41. Loffler AI, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep. 2016;18(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marinescu MA, Loffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8(2):210–20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tschope C, Van Linthout S. New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2014;11(4):436–44.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vejpongsa P, Yeh ET. Topoisomerase 2beta: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther. 2014;95(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  45. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629–36.

    Article  CAS  PubMed  Google Scholar 

  47. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324(12):808–15.

    Article  CAS  PubMed  Google Scholar 

  48. Goorin AM, Chauvenet AR, Perez-Atayde AR, Cruz J, McKone R, Lipshultz SE. Initial congestive heart failure, six to ten years after doxorubicin chemotherapy for childhood cancer. J Pediatrics. 1990;116(1):144–7.

    Article  CAS  Google Scholar 

  49. Trachtenberg BH, Landy DC, Franco VI, Henkel JM, Pearson EJ, Miller TL, et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatric Cardiol. 2011;32(3):342–53.

    Article  Google Scholar 

  50. Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart (British Cardiac Society). 2008;94(4):525–33.

    Article  CAS  PubMed  Google Scholar 

  51. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15(4):1544–52.

    Article  CAS  PubMed  Google Scholar 

  52. Bristow MR, Mason JW, Billingham ME, Daniels JR. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Ann Inter Med. 1978;88(2):168–75.

    Article  CAS  Google Scholar 

  53. Adams MJ, Lipshultz SE. Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44(7):600–6.

    Article  PubMed  Google Scholar 

  54. Lipshultz SE, Scully RE, Stevenson KE, Franco VI, Neuberg DS, Colan SD, et al. Hearts too small for body size after doxorubicin for childhood ALL: Grinch syndrome. J Clin Oncol. 2014;32:10021.

    Article  Google Scholar 

  55. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–43.

    Article  CAS  PubMed  Google Scholar 

  56. Weiss RB, Grillo-López AJ, Marsoni S, Posada JG Jr, Hess F, Ross BJ. Amsacrine-associated cardiotoxicity: an analysis of 82 cases. J Clin Oncol. 1986;4(6):918–28.

    Article  CAS  PubMed  Google Scholar 

  57. Leerink JM, de Baat EC, Feijen EAM, Bellersen L, van Dalen EC, Grotenhuis HB, et al. Cardiac disease in childhood cancer survivors: risk prediction, prevention, and surveillance. JACC CardioOncol. 2020;2(3):363-378.

  58. Merkx R, Feijen E, Leerink JM, de Baat EC, Bellersen L, van Dalen EC, et al. Cardiac function in childhood cancer survivors treated with vincristine: echocardiographic results from the DCCSS LATER 2 CARD study. Int J Cardiol. 2022;369:69–76.

    Article  PubMed  Google Scholar 

  59. Akam-Venkata J, Kadiu G, Galas J, Lipshultz SE, Aggarwal S. Left ventricle segmental function in childhood cancer survivors using speckle-tracking echocardiography. Cardiol Young. 2019;29(12):1494–500.

    Article  PubMed  Google Scholar 

  60. Aziz-Bose R, Margossian R, Ames BL, Moss K, Ehrhardt MJ, Armenian SH, et al. Delphi Panel Consensus Recommendations for Screening and Managing Childhood Cancer Survivors at Risk for Cardiomyopathy. JACC CardioOncol. 2022;4(3):354–67.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mokshagundam D, Olivieri LJ, McCarter R, Kim A, Sable CA, Spurney CF, et al. Cardiac changes in pediatric cancer survivors. J Investig Med. 2020;68(8):1364–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, Silverman LB, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancer survivorship guidelines. Version 5, August 2018. Available from: http://www.survivorshipguidelines.org.

  64. Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sieswerda E, Postma A, van Dalen EC, van der Pal HJH, Tissing WJE, Rammeloo LAJ, et al. The Dutch Childhood Oncology Group guideline for follow-up of asymptomatic cardiac dysfunction in childhood cancer survivors. Ann Oncol. 2012;23(8):2191–8.

    Article  CAS  PubMed  Google Scholar 

  66. Van Dalen EC, Mulder RL, Suh E, Ehrhardt MJ, Aune GJ, Bardi E, et al. Coronary artery disease surveillance among childhood, adolescent and young adult cancer survivors: a systematic review and recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Eur J Cancer (Oxford, England). 2021;156:127-137.

  67. Brickler M, Raskin A, Ryan TD. Current state of pediatric cardio-oncology: a review. Children (Basel). 2022;9(2)

  68. Ness KK, Plana JC, Joshi VM, Luepker RV, Durand JB, Green DM, et al. Exercise intolerance, mortality, and organ system impairment in adult survivors of childhood cancer. J Clin Oncol. 2020;38(1):29–42.

    Article  PubMed  Google Scholar 

  69. Hayek S, Brinkman TM, Plana JC, Joshi VM, Leupker RV, Durand JB, et al. Association of exercise intolerance with emotional distress, attainment of social roles, and health-related quality of life among adult survivors of childhood cancer. JAMA Oncol. 2020;6(8):1194–202.

    Article  PubMed  Google Scholar 

  70. Zhang FF, Kelly MJ, Must A. Early nutrition and physical activity interventions in childhood cancer survivors. Curr Obes Rep. 2017;6(2):168–77.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chow EJ, Pihoker C, Hunt K, Wilkinson K, Friedman DL. Obesity and hypertension among children after treatment for acute lymphoblastic leukemia. Cancer. 2007;110(10):2313–20.

    Article  PubMed  Google Scholar 

  72. Gibson TM, Li Z, Green DM, Armstrong GT, Mulrooney DA, Srivastava D, et al. Blood pressure status in adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort Study. Cancer Epidemiol Biomark Prev. 2017;26(12):1705–13.

    Article  Google Scholar 

  73. Armstrong GT, Oeffinger KC, Chen Y, Kawashima T, Yasui Y, Leisenring W, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sapkota Y, Li N, Pierzynski J, Mulrooney DA, Ness KK, Morton LM, et al. Contribution of polygenic risk to hypertension among long-term survivors of childhood cancer. JACC Cardio Oncol. 2021;3(1):76–84.

    Article  Google Scholar 

  75. Scott JM, Li N, Liu Q, Yasui Y, Leisenring W, Nathan PC, et al. Association of exercise with mortality in adult survivors of childhood cancer. JAMA Oncol. 2018;4(10):1352–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Holmen Olofsson G, Jensen AWP, Idorn M, Thor SP. Exercise oncology and immuno-oncology; a (future) dynamic duo. Int J Mol Sci. 2020;21(11)

  77. Christensen JF, Simonsen C, Hojman P. Exercise Training in Cancer Control and Treatment. Compr Physiol. 2018;9(1):165–205.

    Article  PubMed  Google Scholar 

  78. Morales JS, Santana-Sosa E, Santos-Lozano A, Baño-Rodrigo A, Valenzuela PL, Rincón-Castanedo C, et al. Inhospital exercise benefits in childhood cancer: a prospective cohort study. Scand J Med Sci Sports. 2020;30(1):126–34.

    Article  PubMed  Google Scholar 

  79. Morales JS, Valenzuela PL, Herrera-Olivares AM, Rincón-Castanedo C, Martín-Ruiz A, Castillo-García A, et al. What are the effects of exercise training in childhood cancer survivors? A systematic review. Cancer Metastasis Rev. 2020;39(1):115–25.

    Article  PubMed  Google Scholar 

  80. Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019;51(11):2375–90.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64(9):938–45.

    Article  CAS  PubMed  Google Scholar 

  82. Liesse K, Harris J, Chan M, Schmidt ML, Chiu B. Dexrazoxane significantly reduces anthracycline-induced cardiotoxicity in pediatric solid tumor patients: a systematic review. J Pediatr Hematol/Oncol. 2018;40(6):417–25.

    Article  CAS  PubMed  Google Scholar 

  83. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  84. Lapointe MO, Caru M, Curnier D, Raboisson MJ, Andelfinger G, Krajinovic M, et al. Dexrazoxane treatments limits subclinical cardiac dysfunction in childhood acute lymphoblastic leukemia survivors exposed to doxorubicin treatments. J Pediatr Hematol Oncol. 2022;

  85. Kopp LM, Womer RB, Schwartz CL, Ebb DH, Franco VI, Hall D, et al. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the Children’s Oncology Group. Cardiooncology. 2019;5:15.

    PubMed  PubMed Central  Google Scholar 

  86. US Food and Drug Administration. Orphan drug designations and approvals 2014 Available from: https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=441314. Accessed 2 Apr 2023

  87. Reichardt P, Tabone MD, Mora J, Morland B, Jones RL. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol. 2018;14(25):2663–76.

    Article  CAS  PubMed  Google Scholar 

  88. Chow EJ, Aplenc R, Vrooman LM, Doody DR, Huang YV, Aggarwal S, et al. Late health outcomes after dexrazoxane treatment: a report from the Children's Oncology Group. Cancer. 2022;128(4):788–96.

    Article  CAS  PubMed  Google Scholar 

  89. Asselin BL, Devidas M, Chen L, Franco VI, Pullen J, Borowitz MJ, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62.

    Article  CAS  PubMed  Google Scholar 

  90. Lipshultz SE. Letter by Lipshultz Regarding Article, Anthracycline cardiotoxicity: worrisome enough to have you quaking? Circ Res. 2018;122(7):e62–e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lipshultz SE, Karnik R, Sambatakos P, Franco VI, Ross SW, Miller TL. Anthracycline-related cardiotoxicity in childhood cancer survivors. Curr Opin Cardiol. 2014;29(1):103–12.

    Article  PubMed  Google Scholar 

  92. Shaikh F, Dupuis LL, Alexander S, Gupta A, Mertens L, Nathan PC. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2016;108(4)

  93. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):e263–421.

    Article  PubMed  Google Scholar 

  94. Lipshultz SE, Lipsitz SR, Sallan SE, Simbre VC, Shaikh SL, Mone SM, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  CAS  PubMed  Google Scholar 

  95. Silber JH, Cnaan A, Clark BJ, Paridon SM, Chin AJ, Rychik J, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22(5):820–8.

    Article  CAS  PubMed  Google Scholar 

  96. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–13.

    Article  CAS  PubMed  Google Scholar 

  97. Armenian SH, Hudson MM, Chen MH, Colan SD, Lindenfeld L, Mills G, et al. Rationale and design of the Children’s Oncology Group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord. 2016;16(1):187.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sayin OA, Ozpeker C, Schoenbrodt M, Oz F, Borgermann J, Gummert J, et al. Ventricular assist devices in patients with chemotherapy-induced cardiomyopathy: new modalities. Acta Cardiol. 2015;70(4):430–4.

    Article  PubMed  Google Scholar 

  99. Krasnopero D, Asante-Korang A, Jacobs JP, Stapleton S, Carapellucci J, Dotson M, et al. Case report and review of the literature: the utilisation of a ventricular assist device as bridge to recovery for anthracycline-induced ventricular dysfunction. Cardiol Young. 2018;28(3):471–5.

    Article  PubMed  Google Scholar 

  100. Cavigelli-Brunner A, Schweiger M, Knirsch W, Stiasny B, Klingel K, Kretschmar O, et al. VAD as bridge to recovery in anthracycline-induced cardiomyopathy and HHV6 myocarditis. Pediatrics. 2014;134(3):e894–9.

    Article  PubMed  Google Scholar 

  101. Krasnopero D, Asante-Korang A, Jacobs J, Stapleton S, Carapellucci J, Dotson M, et al. Case report and review of the literature: the utilisation of a ventricular assist device as bridge to recovery for anthracycline-induced ventricular dysfunction - CORRIGENDUM. Cardiol Young. 2019;29(12):1568.

    Article  PubMed  Google Scholar 

  102. Puri K, Denfield SW, Adachi I, Dreyer WJ, Price JF, Spinner JA, et al. Ventricular assist device support for children with chemotherapy-induced cardiomyopathy and advanced heart failure: perspectives gained from a single-center experience. Pediatr Transplant. 2022;26(5):e14286.

    Article  PubMed  Google Scholar 

  103. Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO. Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant. 2012;31(8):805–10.

    Article  PubMed  Google Scholar 

  104. Oliveira GH, Dupont M, Naftel D, Myers SL, Yuan Y, Tang WH, et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014;63(3):240–8.

    Article  PubMed  Google Scholar 

  105. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35(1):1–23.

    Article  PubMed  Google Scholar 

  106. Shugh SB, Ryan TD. Heart transplantation in survivors of childhood cancer. Transl Pediatr. 2019;8(4):314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Meister R, Katzenstein HM. Heart transplantation for anthracycline cardiomyopathy: pump up the volume. Pediatr Transplant. 2017;21(5)

  108. Bock MJ, Pahl E, Rusconi PG, Boyle GJ, Parent JJ, Twist CJ, et al. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the Pediatric Heart Transplant Study (PHTS) group. Pediatric Transplant. 2017;21(5)

  109. Perkins JL, Chen Y, Harris A, Diller L, Stovall M, Armstrong GT, et al. Infections among long-term survivors of childhood and adolescent cancer: a report from the Childhood Cancer Survivor Study. Cancer. 2014;120(16):2514–21.

    Article  PubMed  Google Scholar 

  110. Belzile-Dugas E, Eisenberg MJ. Radiation-induced cardiovascular disease: review of an underrecognized pathology. J Am Heart Assoc. 2021;10(18):e021686.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Uriel N, Vainrib A, Jorde UP, Cotarlan V, Farr M, Cheema FH, Naka Y, Mancini D, Colombo PC. Mediastinal radiation and adverse outcomes after heart transplantation. J Heart Lung Transplant. 2010;29(3):378–81.

    Article  PubMed  Google Scholar 

  112. Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez-Mattei J, Mitchell JD. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 2021;3(3):343–59.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Al-Kindi SG, Oliveira GH. Heart transplantation outcomes in radiation-induced restrictive cardiomyopathy. J Card Fail. 2016;22(6):475–8.

    Article  PubMed  Google Scholar 

  114. Saxena P, Joyce LD, Daly RC, Kushwaha SS, Schirger JA, Rosedahl J, Dearani JA, Kara T, Edwards BS. Cardiac transplantation for radiation-induced cardiomyopathy: the Mayo Clinic experience. Ann Thorac Surg. 2014;98(6):2115–21.

    Article  PubMed  Google Scholar 

  115. Hill AC, Silka MJ, Bar-Cohen Y. Cardiac resynchronization therapy in pediatrics. J Innov Card Rhythm Manag. 2018;9(8):3256–64.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Stavrakis S, Lazzara R, Thadani U. The benefit of cardiac resynchronization therapy and QRS duration: a meta-analysis. J Cardiovasc Electrophysiol. 2012;23(2):163–8.

    Article  PubMed  Google Scholar 

  117. Jones BO, Davis AM, Alison J, Weintraub RG, Butt W, Cheung MM. Cardiac re-synchronization therapy in a child with severe anthracycline-induced congestive heart failure and normal QRS duration. J Heart Lung Transplant. 2007;26(12):1333–5.

    Article  PubMed  Google Scholar 

  118. Ramos KN, Gregornik D, Ramos KS. Pharmacogenomics insights into precision pediatric oncology. Curr Opin Pediatr. 2021;33(6):564–9.

    Article  CAS  PubMed  Google Scholar 

  119. Visscher H, Ross CJ, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer. 2013;60(8):1375–81.

    Article  CAS  PubMed  Google Scholar 

  120. Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ, Kiszel PS, et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol Int. 2012;36(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  122. Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, Ansari M, et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2016;16(6):530–5.

    Article  CAS  PubMed  Google Scholar 

  123. Al-Otaibi TK, Weitzman B, Tahir UA, Asnani A. Genetics of anthracycline-associated cardiotoxicity. Front Cardiovasc Med. 2022;9:867873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Bansal.

Ethics declarations

Conflict of Interest

The authors do not have any potential conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolani, D., Wilcox, J., Shyam, S. et al. Cardio-oncology for Pediatric and Adolescent/Young Adult Patients. Curr. Treat. Options in Oncol. 24, 1052–1070 (2023). https://doi.org/10.1007/s11864-023-01100-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01100-4

Keywords

Navigation