Skip to main content
Log in

The ostensive dimension through the lenses of two didactic approaches

  • Original article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The paper presents how two different theories—the APC-space and the ATD—can frame in a complementary way the semiotic (or ostensive) dimension of mathematical activity in the way they approach teaching and learning phenomena. The two perspectives coincide in the same subject: the importance given to ostensive objects (gestures, discourses, written symbols, etc.) not only as signs but also as essential tools of mathematical practices. On the one hand, APC-space starts from a general semiotic analysis in terms of “semiotic bundles” that is to be integrated into a more specific epistemological analysis of mathematical activity. On the other hand, ATD proposes a general model of mathematical knowledge and practice in terms of “praxeologies” that has to include a more specific analysis of the role of ostensive objects in the development of mathematical activities in the classroom. The articulation of both theoretical perspectives is proposed as a contribution to the development of suitable frames for Networking Theories in mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The definition of Semiotic Set is a generalisation of the definition of Semiotic System, as it is given in Ernest (2006, pp. 69–70).

  2. Another example, made of gazes, speech, gestures and inscriptions has been studied by F. Ferrara in her PhD Dissertation (Ferrara, 2006).

  3. The “euclideanism”, as a general epistemological model of mathematics, pretends to reduce mathematical activity to the process of deducing theorems from a finite set of propositions (the axioms) concerning the so called primitive terms, which are only indirectly defined. The truth of the axioms flows from the axioms to the theorems through deductive canals of truth transmission (the proofs) (Lakatos, 1978).

References

  • Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana de Investigación en Matemática Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, pp. 267–299.

  • Arzarello, F. (2008). Mathematical landscapes and their inhabitants: perceptions, languages, theories. In M. Niss (Ed.), Proceedings ICME 10, Plenary Lecture.

  • Arzarello, F., Bazzini, L., Ferrara, F., Robutti, O., Sabena, C., & Villa, B. (2006). Will Penelope choose another bridegroom? Looking for an answer through signs, Proceedings of 30th conference of the international group for the psychology of mathematics education, Prague.

  • Arzarello, F., & Olivero, F. (2005). Theories and empirical researches: towards a common framework. In M. Bosch (Ed.), European research in mathematics education IV, Proceedings of CERME 4.

  • Arzarello, F., & Paola, D. (2007). Semiotic games: the role of the teacher. Proceedings of 31st conference of the international group for the psychology of mathematics education. 8–15 July 2007: Seoul.

  • Barquero, B., Bosch, M., & Gascón, J. (2008). Using research and study courses for teaching mathematical modelling at university level, Proceedings of CERME5.

  • Bolea P., Bosch. M., Gascón J. (2004). Why is modelling not included in the teaching of algebra at secondary school? Quaderni di Ricerca in Didattica, 14, 125–133.

    Google Scholar 

  • Bosch, M. (1994). La dimensión ostensiva en la actividad matemática. El caso de la proporcionalidad. Doctoral dissertation, Universitat Autònoma de Barcelona.

  • Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Recherches en Didactique des Mathématiques, 19(1), 77–124.

    Google Scholar 

  • Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–63.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Didactique des Mathématiques 1970–1990. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Chevallard, Y. (1999). L’analyse de pratiques professorales dans la théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • Chevallard, Y. (2002). Organiser l’étude. 3. Écologie & régulation. Actes de la XI école d’été de didactique (p. 41–56). Grenoble: La pensée sauvage.

  • Chevallard, Y. (2004). Vers une didactique de la codisciplinarité. Notes sur une nouvelle épistémologie scolaire. Journées de didactique comparée. Lyon.

  • Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In: Bosch, M. (Ed.), Proceedings of the IV congress of the European society for research in mathematics education (CERME 4) (p. 1254–1263).

  • Chevallard, Y., Bosch, M., & Gascón, J. (1997). Estudiar matemáticas. El eslabón perdido entre la enseñanza y el aprendizaje. Barcelona: ICE/Horsori.

    Google Scholar 

  • Duval R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, (61), 103–131.

    Article  Google Scholar 

  • Ernest, P., (2006). A semiotic perspective of mathematical activity: the case of number. Educational Studies in Mathematics, (61), 67–101.

  • Ferrara, F. (2006). Acting and interacting with tools to understand Calculus Concepts, PhD dissertation, Turin University.

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.

    Article  Google Scholar 

  • García, J. (2005). La modelización como herramienta de articulación de la matemática escolar. De la proporcionalidad a las herramientas funcionales. Doctoral dissertation. Universidad de Jaén.

  • García, F. J., Gascón, J., Ruiz Higueras, L., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. Zentralblatt für Didaktik der Mathematik, 38(3), 226–246.

    Article  Google Scholar 

  • Goldin-Meadow, S. (2003). Hearing gestures: how our hands help us think. Cambridge: Harvard University Press.

    Google Scholar 

  • Lakatos, I. (1978). Mathematics, science and epistemology: philosophical papers, vol 2. Cambridge: University Press.

    Google Scholar 

  • McNeill, D. (1992). Hand and mind: what gestures reveal about thought. Chicago: Chicago University Press.

    Google Scholar 

  • Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In: N. A. Pateman, B. J. Dougherty & J. T. Zilliox (eds.), Proceeding of PME 27, (1, pp. 103–135), Honolulu, Hawaii.

  • Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On embodiment, artifacts, and signs: a semiotic-cultural perspective on mathematical thinking. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of PME, 29(4) 113–120.

  • Rodríguez, E. (2005). Metacognición, matemáticas y resolución de problemas: una propuesta integradora desde el enfoque antropológico. Doctoral dissertation. Universidad Complutense de Madrid.

  • Rodríguez, E., Bosch, M., & Gascón, J. (2004). ¿Qué papel se asigna a la resolución de problemas en el currículum actual de matemáticas? In C. Castro y M. Gómez (Eds.), Análisis del currículo actual de matemáticas y posibles alternativas, (pp. 95–118). Barcelona: Edebé.

  • Rodríguez, E., Bosch, M., & Gascón, J. (2008). An anthropological approach to metacognition: praxeologies and study and research courses.

  • Ruiz, N., Bosch, M., & Gascón, J. (2008). The functional algebraic modelling at Secondary level Proceedings of CERME5.

  • Sabena, C. (2007). Body and signs: a multimodal semiotic approach to teaching–learning processes in early Calculus, PhD dissertation, Turin University.

  • Sáenz-Ludlow, A., & Presmeg, N. (Eds.) 2006, Special Issue of Educational Studies in Mathematics, 61, 1–2.

  • Seitz, J. A. (2000). The bodily basis of thought, new ideas in psychology. An International Journal of Innovative Theory in Psychology, 18(1), 23–40.

    Google Scholar 

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30/2, 161–177.

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625–636. (http://www.indiana.edu/~cogdev/labwork/WilsonSixViewsofEmbodiedCog.pdf).

Download references

Acknowledgments

Research program supported by MIUR and by the Università di Torino and the Università di Modena e Reggio Emilia (PRIN Contract n. 2005019721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Sabena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzarello, F., Bosch, M., Gascón, J. et al. The ostensive dimension through the lenses of two didactic approaches. ZDM Mathematics Education 40, 179–188 (2008). https://doi.org/10.1007/s11858-008-0084-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-008-0084-1

Keywords

Navigation