Skip to main content
Log in

Profinite groups in which centralizers are abelian

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group. It is shown that G has a normal open subgroup N which is either abelian or pro-p. Further, rather detailed information about the finite quotient G/N is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bolker, Inverse limits of solvable groups, Proceedings of the American Mathematical Society 14 (1963), 147–152.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Brauer, M. Suzuki and G. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois Journal of Mathematics 2 (1958), 718–745.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. IX, Interscience, New York–London, 1962.

    MATH  Google Scholar 

  4. M. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 11, Springer, Berlin, 2005.

  5. B. Fine and G. Rosenberger, Reflections on commutative transitivity, in Aspects of Infinite Groups, Algebra and Discrete Mathematics, Vol. 1, World Scientific, Hackensack, NJ, 2008, pp. 112–130.

  6. B. Fine, A. Gaglione, G. Rosenberger and D. Spellman, On CT and CSA groups and related ideas, Journal of Group Theory 19 (2016), 923–940.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific Journal of Mathematics 13 (1963), 775–1029.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Gorenstein, Finite Groups, Chelsea, New York, 1980.

    MATH  Google Scholar 

  9. R. M. Guralnick and D. Haran, Frobenius subgroups of free profinite products, Bulletin of the London Mathematical Society 43 (2011), 1141–1150.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Higman, Groups and rings having automorphisms without non-trivial fixed elements, Journal of the London Mathematical Society 32 (1957), 321–334.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Khukhro, N. Makarenko and P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, Forum Mathematicum 26 (2014), 73–112.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Khukhro and P. Shumyatsky, Nonsoluble and non-p-soluble length of finite groups, Israel Journal of Mathematics 207 (2015), 507–525.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Kochloukova and P. Zalesskii, Fully residually free pro-p groups, Journal of Algebra 324 (2010), 782–792.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Kochloukova and P. Zalesskii, On pro-p analogues of limit groups via extensions of centralizers, Mathematische Zeitschrift 267 (2011), 109–128.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Lyndon and P. Schupp, Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 89, Springer, Berlin–New York, 1977.

  16. A. Myasnikov and V. Remeslennikov, Exponential groups. II. Extensions of centralizers and tensor completion of CSA groups, International Journal of Algebra and Computation 6 (1996), 687–711.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Ribes and P. Zalesskii, Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 40, Springer, Berlin, 2000.

  18. D. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, Vol. 80, Springer, New York, 1996.

    Google Scholar 

  19. H. Rose, A Course on Finite Groups, Universitext, Springer, London, 2009.

    Book  Google Scholar 

  20. J.-P. Serre, Three letters toWalter Feit on group representations and quaternions, Journal of Algebra 319 (2008), 549–557.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Shumyatsky, Centralizers in groups with finiteness conditions, Journal of Group Theory 1 (1998), 275–282.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Suzuki, The nonexistence of a certain type of simple groups of odd order, Proceedings of the American Mathematical Society 8 (1957), 686–695.

    Article  MathSciNet  Google Scholar 

  23. M. Suzuki, Group Theory. II, Grundlehren der Mathematischen Wissenschaften, Vol. 248, Springer, New York, 1986.

  24. J. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proceedings of the National Academy of Sciences of the United States of America 45 (1959), 578–581.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Weisner, Groups in which the normaliser of every element except identity is abelian, Bulletin of the American Mathematical Society 31 (1925), 413–416.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Wilkes, Virtual pro-p properties of 3-manifold groups, Journal of Group Theory 20 (2017), 999–1023.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Wilson, On the structure of compact torsion groups, Monatshefte für Mathematik 96 (1983), 57–66.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y.-F. Wu, Groups in which commutativity is a transitive relation, Journal of Algebra 207 (1998), 165–181.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Zalesskii and T. Zapata, Profinite extensions of centralizers and the profinite completion of limit groups, Revista Matemática Iberoamericana 36 (2020), to appear, https://doi.org/arxiv.org/abs/1711.01500.

    Google Scholar 

  30. E. Zelmanov, On periodic compact groups, Israel Journal of Mathematics 77 (1992), 83–95.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Zapata.

Additional information

To Alex Zalesski on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumyatsky, P., Zalesskii, P. & Zapata, T. Profinite groups in which centralizers are abelian. Isr. J. Math. 230, 831–854 (2019). https://doi.org/10.1007/s11856-019-1838-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1838-x

Navigation