Skip to main content
Log in

Null-finite sets in topological groups and their applications

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the paper we introduce and study a new family of “small” sets which is tightly connected with two well known σ-ideals: of Haar-null sets and of Haar-meager sets. We define a subset A of a topological group X to be null-finite if there exists a convergent sequence (xn)nω in X such that for every xX the set {nω : x + xnA} is finite. We prove that each null-finite Borel set in a complete metric Abelian group is Haar-null and Haar-meager. The Borel restriction in the above result is essential as each non-discrete metric Abelian group is the union of two null-finite sets. Applying null-finite sets to the theory of functional equations and inequalities, we prove that a mid-point convex function f : G → ℝ defined on an open convex subset G of a metric linear space X is continuous if it is upper bounded on a subset B which is not null-finite and whose closure is contained in G. This gives an alternative short proof of a known generalization of the Bernstein–Doetsch theorem (saying that a mid-point convex function f: G → ℝ defined on an open convex subset G of a metric linear space X is continuous if it is upper bounded on a non-empty open subset B of G). Since Borel Haar-finite sets are Haar-meager and Haar-null, we conclude that a mid-point convex function f: G → ℝ defined on an open convex subset G of a complete linear metric space X is continuous if it is upper bounded on a Borel subset BG which is not Haar-null or not Haar-meager in X. The last result resolves an old problem in the theory of functional equations and inequalities posed by Baron and Ger in 1983.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, Vol. 1, Atlantis Press, Paris; World Scientific, Hackensack, NJ, 2008.

  2. T. Banakh, Cardinal characteristics of the ideal of Haar null sets, Commentationes Mathematicae Universitatis Carolinae 45 (2004), 119–137.

    MathSciNet  MATH  Google Scholar 

  3. T. Banakh, Haar-open sets: a right way of generalizing the Steinhaus sum theorem to non-locally compact groups, preprint, https://doi.org/arxiv.org/abs/1805.07515.

  4. T. Banakh, S. Glab, E. Jablońska and J. Swaczyna, Haar-I sets: looking at small sets in Polish groups through compact glasses, preprint, https://doi.org/arxiv.org/abs/1803.06712.

  5. K. Baron and R. Ger, Problem (P239), in The 21st International Symposium on Functional Equations, August 6–13, 1983, Konolfingen, Switzerland, Aequationes Mathematicae 26 (1984), 225–294.

    Google Scholar 

  6. T. Bartoszynski and H. Judah, Set Theory, A K Peters, Wellesley, MA, 1995.

    Book  MATH  Google Scholar 

  7. F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Mathematische Annalen 76 (1915), 514–526.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. H. Bingham and A. J. Ostaszewski, The Steinhaus–Weil property: its converse, Solecki amenability and subcontinuity, preprint, https://doi.org/arxiv.org/abs/1607.00049.

  9. N. H. Bingham and A. J. Ostaszewski, Category-measure duality: convexity, mid-point convexity and Berz sublinearity, Aequationes Mathematicae 91 (2017), 801–836.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel Journal of Mathematics 13 (1972), 255–260.

    Article  MathSciNet  Google Scholar 

  11. U. B. Darji, On Haar meager sets, Topology and its Applications 160 (2013), 2396–2400.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Doležal and V. Vlasăk, Haar meager sets, their hulls, and relationship to compact sets, Journal of Mathematical Analysis and Applications 446 (2017), 852–863.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Doležal, V. Vlasăk, B. Vejnar and M. Rmoutil, Haar meager sets revisited, Journal of Mathematical Analysis and Applications 440 (2016), 922–939.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Elekes and D. Nagy, Haar null and Haar meager sets: a survey and new results, preprint, https://doi.org/arxiv.org/abs/1606.06607.

  15. M. Elekes and Z. Vidnyánszky, Haar null sets without Gδ hulls, Israel Journal of Mathematics 209 (2015), 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Fabian, P. Habala, P. Hajek, V. Montesinos, J. Pelant and V. Zizler, Functional Analysis and Infinite-dimensional Geometry, CMS Books in Mathematics, Vol. 8, Springer-Verlag, New York, 2001.

  17. P. Fischer and Z. Slodkowski, Christensen zero sets and measurable convex functions, Proceedings of the American Mathematical Society 79 (1980), 449–453.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bulletin of the American Mathematical Society 27 (1992) 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: an addendum, Bulletin of the American Mathematical Society 28 (1993), 306–307.

    Article  MATH  Google Scholar 

  20. E. Jablońska, Some analogies between Haar meager sets and Haar null sets in abelian Polish groups, Journal of Mathematical Analysis and Applications 421 (2015), 1479–1486.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1995.

  22. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe Uniwersytetu ´Slaskiego w Katowicach, Vol. 489, Uniwersytet ´Slaski, Katowice; PWN, Warsaw, 1985.

  23. A. Kwela, Haar-smallest sets, https://doi.org/arxiv.org/abs/1711.09753.

  24. Ie. Lutsenko and I. V. Protasov, Sparse, thin and other subsets of groups, International Journal of Algebra and Computation 19 (2009), 491–510.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Matoušková and M. Zelený, A note on intersections of non-Haar null sets, Colloquium Mathematicum 96 (2003), 1–4.

    Google Scholar 

  26. M. R. Mehdi, On convex functions, Journal of the London Mathematical Society 39 (1964), 321–326.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. J. Pettis, Remarks on a theorem of E. J. McShane, Proceedings of the American Mathematical Society 2 (1951), 166–171.

    Article  Google Scholar 

  28. S.ˆ Piccard, Sur les ensembles de distances des ensembles de points d’un espace Euclidien, Mémoires de l’Université Neuchatel, Vol. 13, Secrétariat de l’Université Neuchatel, 1939.

  29. C. Rosendal and S. Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel Journal of Mathematics 162 (2007), 349–371.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York–Berlin, 1971.

  31. S. Solecki, On Haar null sets, Fundamenta Mathematicae 149 (1996), 205–210.

    MathSciNet  MATH  Google Scholar 

  32. H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fundamenta Mathematicae 1 (1920), 99–104.

    Article  MATH  Google Scholar 

  33. A. Weil, L’intégration dans les groupes topologiques, Actualités Scientifiques et Industrielles, Vol. 1145, Hermann, Paris, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Banakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banakh, T., Jabłónska, E. Null-finite sets in topological groups and their applications. Isr. J. Math. 230, 361–386 (2019). https://doi.org/10.1007/s11856-018-1826-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1826-6

Navigation