Skip to main content
Log in

On the average volume of sections of convex bodies

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The average section functional as(K) of a star body in Rn is the average volume of its central hyperplane sections: \(as\left( k \right) = \int_{{S^{n - 1}}} {\left| {K \cap {\xi ^ \bot }} \right|} d\sigma \left( \xi \right)\). We study the question whether there exists an absolute constantC > 0 such that for every n, for every centered convex body K in Rn and for every 1 ≤ kn − 2,

$$as\left( K \right) \leqslant {C^k}{\left| K \right|^{\frac{k}{n}}}\mathop {\max }\limits_{|E \in G{r_{n - k}}} {\kern 1pt} as\left( {K \cap E} \right)$$

. We observe that the case k = 1 is equivalent to the hyperplane conjecture. We show that this inequality holds true in full generality if one replaces C by CL K orCdovr(K, BP n k ), where L K is the isotropic constant of K and dovr(K, BP n k ) is the outer volume ratio distance of K to the class BP n k of generalized k-intersection bodies. We also compare as(K) to the average of as(KE) over all k-codimensional sections of K. We examine separately the dependence of the constants on the dimension when K is in some classical position. Moreover, we study the natural lower dimensional analogue of the average section functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, Vol. 202, American Mathematical Society, Providence, RI, 2015.

  2. K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2), 44 (1991), 351–359.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bollobás and A. Thomason, Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc., 27 (1995), 417–424.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, in Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., Vol. 1469, Springer, Berlin, 1991, pp. 127–137.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Brazitikos, A. Giannopoulos and D.-M. Liakopoulos, Uniform cover inequalities for coordinate sections and projections of convex bodies, Advances in Geometry, to appear.

  6. S. Brazitikos, A. Giannopoulos, P. Valettas and B.-H. Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, Vol. 196, American Mathematical Society, Providence, RI, 2014.

  7. H. Busemann and E. G. Straus, Area and normality, Pacific J. Math., 10 (1960), 35–72.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Dafnis and G. Paouris, Estimates for the affine and dual affine quermassintegrals of convex bodies, Illinois J. Math., 56 (2012), 1005–1021.

    MathSciNet  MATH  Google Scholar 

  9. H. Furstenberg and I. Tzkoni, Spherical functions and integral geometry, Israel J. Math., 10 (1971), 327–338.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. J. Gardner, Geometric tomography, second ed., Encyclopedia of Mathematics and its Applications, Vol. 58, Cambridge University Press, New York, 2006.

  11. A. Giannopoulos, A. Koldobsky and P. Valettas, Inequalities for the surface area of projections of convex bodies, Canadian Journal of Mathematics, to appear.

  12. P. Goodey, E. Lutwak and W. Weil, Functional analytic characterizations of classes of convex bodies, Math. Z., 222 (1996), 363–381.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Goodey and W. Weil, Intersection bodies and ellipsoids, Mathematika, 42 (1995), 295–304.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. L. Grinberg, Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies, Math. Ann., 291 (1991), 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., 16 (2006), 1274–1290.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, Vol. 116, American Mathematical Society, Providence, RI, 2005.

  17. A. Koldobsky, Stability and separation in volume comparison problems, Math. Model. Nat. Phenom., 8 (2013), 156–169.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Koldobsky, Slicing inequalities for measures of convex bodies, Adv. Math., 283 (2015), 473–488.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Koldobsky, Slicing inequalities for subspaces of L p, Proc. Amer. Math. Soc., 144 (2016), 787–795.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Koldobsky and A. Pajor, A remark on measures of sections of L p-balls, in Geometric Aspects of Functional Analysis, Israel Seminar 2014-2016, Lecture Notes in Math., Vol. 2169, 2017, pp. 213–220.

    MATH  Google Scholar 

  21. A. Koldobsky, G. Paouris and M. Zymonopoulou, Isomorphic properties of intersection bodies, J. Funct. Anal., 261 (2011), 2697–2716.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Lutwak, Dual mixed volumes, Pacific J. Math., 58 (1975), 531–538.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90 (1984), 415–421.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math., 71 (1988), 232–261.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Markessinis, G. Paouris and C. Saroglou, Comparing the M-position with some classical positions of convex bodies, Math. Proc. Cambridge Philos. Soc., 152 (2012), 131–152.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Meyer, A volume inequality concerning sections of convex sets, Bull. London Math. Soc. 20 (1988), 151–155.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Milman, Dual mixed volumes and the slicing problem, Adv. Math., 207 (2006), 566–598.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc., 364 (2012), 287–308.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. M. Petty, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc., 12 (1961), 824–828.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Schneider, Convex bodies: the Brunn-Minkowski theory, expanded ed., Encyclopedia of Mathematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.

  31. G. Zhang, Sections of convex bodies, Amer. J. Math., 118 (1996), 319–340.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silouanos Brazitikos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazitikos, S., Dann, S., Giannopoulos, A. et al. On the average volume of sections of convex bodies. Isr. J. Math. 222, 921–947 (2017). https://doi.org/10.1007/s11856-017-1561-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1561-4

Navigation