Skip to main content
Log in

Upper tails for arithmetic progressions in random subsets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the upper tail of the number of arithmetic progressions of a given length in a random subset of {1,..., n}, establishing exponential bounds which are best possible up to constant factors in the exponent. The proof also extends to Schur triples, and, more generally, to the number of edges in random induced subhypergraphs of ‘almost linear’ k-uniform hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and J. H. Spencer, The probabilistic method, third ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008.

    Google Scholar 

  2. A. Baltz, P. Hegarty, J. Knape, U. Larsson and T. Schoen, The structure of maximum subsets of {1,...,n} with no solutions to a + b = kc, Electron. J. Combin. 12 (2005), Research Paper 19.

    Google Scholar 

  3. S. Boucheron, G. Lugosi and P. Massart, Concentration inequalities using the entropy method, Ann. Probab. 31 (2003), 1583–1614.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Boucheron, G. Lugosi and P. Massart, Concentration inequalities, Oxford University Press, Oxford, 2013, A nonasymptotic theory of independence, With a foreword byMichel Ledoux.

    Book  MATH  Google Scholar 

  5. S. Chatterjee, The missing log in large deviations for triangle counts, Random Structures Algorithms 40 (2012), 437–451.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Chatterjee and P. S. Dey, Applications of Stein’s method for concentration inequalities, Ann. Probab. 38 (2010), 2443–2485.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Chatterjee and S. R. S. Varadhan, The large deviation principle for the Erdős-Rényi random graph, European J. Combin. 32 (2011), 1000–1017.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Demarco and J. Kahn, Tight upper tail bounds for cliques, Random Structures Algorithms 41 (2012), 469–487.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. DeMarco and J. Kahn, Upper tails for triangles, Random Structures Algorithms 40 (2012), 452–459.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dembo, Information inequalities and concentration of measure, Ann. Probab. 25 (1997), 927–939.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. P. Dubhashi and A. Panconesi, Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  12. P. Erdős and P. Tetali, Representations of integers as the sum of k terms, Random Structures Algorithms 1 (1990), 245–261.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Friedgut, V. Rödl and M. Schacht, Ramsey properties of random discrete structures, Random Structures Algorithms 37 (2010), 407–436.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Graham, V. Rödl and A. Ruciński, On Schur properties of random subsets of integers, J. Number Theory 61 (1996), 388–408.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Green, The Cameron-Erdős conjecture, Bull. London Math. Soc. 36 (2004), 769–778.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. E. Harris, A lower bound for the critical probability in a certain percolation process, Proc. Cambridge Philos. Soc. 56 (1960), 13–20.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Janson, Poisson approximation for large deviations, Random Structures Algorithms 1 (1990), 221–229.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Janson, New versions of Suen’s correlation inequality, in Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997), Vol. 13, 1998, pp. 467–483.

    Google Scholar 

  19. S. Janson, T. Łuczak and A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

    Google Scholar 

  20. S. Janson, K. Oleszkiewicz and A. Ruciński, Upper tails for subgraph counts in random graphs, Israel J. Math. 142 (2004), 61–92.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Janson and A. Ruciński, The infamous upper tail, Random Structures Algorithms 20 (2002), 317–342, Probabilistic methods in combinatorial optimization.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Janson and A. Ruciński, The deletion method for upper tail estimates, Combinatorica 24 (2004), 615–640.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Janson and A. Ruciński, Upper tails for counting objects in randomly induced subhypergraphs and rooted random graphs, Ark. Mat. 49 (2011), 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Janson and L. Warnke, The lower tail: Poisson approximation revisited, Random Structures Algorithms 48 (2016), 219–246.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. H. Kim and V. H. Vu, Concentration of multivariate polynomials and its applications, Combinatorica 20 (2000), 417–434.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, Vol. 89, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  27. E. Lubetzky and Y. Zhao, On replica symmetry of large deviations in random graphs, Random Structures Algorithms 47 (2015), 109–146.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. McDiarmid, On the method of bounded differences, in Surveys in combinatorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., Vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148–188.

    Chapter  Google Scholar 

  29. C. McDiarmid and B. Reed, Concentration for self-bounding functions and an inequality of Talagrand, Random Structures Algorithms 29 (2006), 549–557.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Reimer, Proof of the van den Berg-Kesten conjecture, Combin. Probab. Comput. 9 (2000), 27–32.

    Article  MathSciNet  MATH  Google Scholar 

  31. O. Riordan and L. Warnke, The Janson inequalities for general up-sets, Random Structures Algorithms 46 (2015), 391–395.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Rödl and A. Ruciński, Random graphs with monochromatic triangles in every edge coloring, Random Structures Algorithms 5 (1994), 253–270.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Rué and A. Zumalacárregui, Threshold functions for systems of equations on random sets, arXiv:1212.5496 (2012).

    Google Scholar 

  34. W. Samotij, Stability results for random discrete structures, Random Structures Algorithms 44 (2014), 269–289.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. A. Sapozhenko, The Cameron-Erdős conjecture, Dokl. Akad. Nauk 393 (2003), 749–752.

    MathSciNet  Google Scholar 

  36. M. Schacht, Extremal results for random discrete structures, Ann. of Math. (2) 184 (2016), 333–365.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Schudy and M. Sviridenko, Concentration and moment inequalities for polynomials of independent random variables, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2012, pp. 437–446.

    Chapter  Google Scholar 

  38. M. Šileikis, On the upper tail of counts of strictly balanced subgraphs, Electron. J. Combin. 19 (2012), Paper 4, 14.

    MathSciNet  MATH  Google Scholar 

  39. J. Spencer, Counting extensions, J. Combin. Theory Ser. A 55 (1990), 247–255.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math. (1995), 73–205.

    Google Scholar 

  41. J. van den Berg and J. Jonasson, A BK inequality for randomly drawn subsets of fixed size, Probab. Theory Related Fields 154 (2012), 835–844.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Probab. 22 (1985), 556–569.

    Article  MathSciNet  MATH  Google Scholar 

  43. V. H. Vu, Concentration of non-Lipschitz functions and applications, Random Structures Algorithms 20 (2002), 262–316, Probabilistic methods in combinatorial optimization.

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Warnke, On the missing log in upper tail estimates, arXiv:1612.08561 (2016).

    Google Scholar 

  45. L. Warnke, When does the K 4-free process stop?, Random Structures Algorithms 44 (2014), 355–397.

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Warnke, On the method of typical bounded differences, Combin. Probab. Comput. 25 (2016), 269–299.

    Article  MathSciNet  Google Scholar 

  47. G. Wolfovitz, A concentration result with application to subgraph count, Random Structures Algorithms 40 (2012), 254–267.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Warnke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warnke, L. Upper tails for arithmetic progressions in random subsets. Isr. J. Math. 221, 317–365 (2017). https://doi.org/10.1007/s11856-017-1546-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1546-3

Navigation