Skip to main content
Log in

Uo-convergence and its applications to Cesàro means in Banach lattices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A net (x α ) in a vector lattice X is said to uo-converge to x if \(\left| {{x_\alpha } - x} \right| \wedge u\xrightarrow{o}0\) for every u ≥ 0. In the first part of this paper, we study some functional-analytic aspects of uo-convergence. We prove that uoconvergence is stable under passing to and from regular sublattices. This fact leads to numerous applications presented throughout the paper. In particular, it allows us to improve several results in [27, 26]. In the second part, we use uo-convergence to study convergence of Cesàro means in Banach lattices. In particular, we establish an intrinsic version of Komlós’ Theorem, which extends the main results of [35, 16, 31] in a uniform way. We also develop a new and unified approach to Banach–Saks properties and Banach–Saks operators based on uo-convergence. This approach yields, in particular, short direct proofs of several results in [20, 24, 25].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, Vol. 50, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  2. Y. Abramovich and G. Sirotkin, On order convergence of nets, Positivity 9 (2005), 287–292.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. J. Aldous, Subsequences of sequences of random variables, Bull. Amer. Math. Soc. 83 (1976), 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, second ed., Mathematical Surveys and Monographs, Vol. 105, American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  5. C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, Reprint of the 1985 original.

    Book  MATH  Google Scholar 

  6. S. V. Astashkin and F. A. Sukochev, Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336 (2007), 1231–1258.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. V. Astashkin, N. Kalton and F. A. Sukochev, Cesaro mean convergence of martingale differences in rearrangement invariant spaces, Positivity 12 (2008), 387–406.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91–94.

    MathSciNet  MATH  Google Scholar 

  9. S. Banach and S. Saks, Sur la convergence forte dans les champs Lp, Studia Math. 2 (1930), 51–57.

    MATH  Google Scholar 

  10. B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bozorgnia and M. B. Rao, A strong law of large numbers for subsequences of random elements in separable Banach spaces, Ann. Probab. 7 (1979), 156–158.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Cembranos, The weak Banach-Saks property on Lp(µ, E), Math. Proc. Cambridge Philos. Soc. 115 (1994), 283–290.

    Article  MathSciNet  MATH  Google Scholar 

  13. Z. L. Chen and A. W. Wickstead, Relative weak compactness of solid hulls in Banach lattices, Indag. Math. (N.S.) 9 (1998), 187–196.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. P. Curbera, El espacio de funciones integrables respecto de una medida vectorial, 1992, Thesis (Ph.D.)–University of Sevilla.

    Google Scholar 

  15. G. P. Curbera, Operators into L1 of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), 317–330.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. B. Day and C. Lennard, Convex Komlós sets in Banach function spaces, J. Math. Anal. Appl. 367 (2010), 129–136.

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Delgado and M. A. Juan, Representation of Banach lattices as L1 w spaces of a vector measure defined on a d-ring, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 239–256.

    MathSciNet  MATH  Google Scholar 

  18. R. DeMarr, Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math. 8 (1964), 601–606.

    MathSciNet  MATH  Google Scholar 

  19. P. G. Dodds, B. de Pagter and F. Sukochev, Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators, Trans. Amer. Math. Soc. 368 (2016), 4315–4355.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. G. Dodds, T. K. Dodds and F. A. Sukochev, Banach-Saks properties in symmetric spaces of measurable operators, Studia Math. 178 (2007), 125–166.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. G. Dodds, E. M. Semenov and F. A. Sukochev, The Banach-Saks property in rearrangement invariant spaces, Studia Math. 162 (2004), 263–294.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Erdős and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232–234.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 8, Springer-Verlag, New York, 2001.

    Book  MATH  Google Scholar 

  24. J. Flores and C. Ruiz, Domination by positive Banach-Saks operators, Studia Math. 173 (2006), 185–192.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Flores and P. Tradacete, Factorization and domination of positive Banach-Saks operators, Studia Math. 189 (2008), 91–101.

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Gao, Unbounded order convergence in dual spaces, J. Math. Anal. Appl. 419 (2014), 347–354.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl. 415 (2014), 931–947.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. J. H. Garling, Subsequence principles for vector-valued random variables, Math. Proc. Cambridge Philos. Soc. 86 (1979), 301–311.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Groenewegen, On spaces of Banach lattice valued functions and measures, 1982, Thesis (Ph.D.)–Nijmegen University.

    Google Scholar 

  30. A. Halevy and M. B. Rao, On an analogue of Komlós’ theorem for strategies, Ann. Probab. 7 (1979), 1073–1077.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Jiménez Fernández, M. A. Juan and E. A. Sánchez Pérez, A Komlós theorem for abstract Banach lattices of measurable functions, J. Math. Anal. Appl. 383 (2011), 130–136.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. A. Juan, Vector measures on d-rings and representation theorems of Banach lattices, 2011, Thesis (Ph.D.).

    Google Scholar 

  33. A. Kamińska and H. J. Lee, Banach-Saks properties of Musielak-Orlicz and Nakano sequence spaces, Proc. Amer. Math. Soc. 142 (2014), 547–558.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Kaplan, On unbounded order convergence, Real Anal. Exchange 23 (1997/98), 175–184.

    MathSciNet  MATH  Google Scholar 

  35. J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. V. Krygin, E. M. Sheremet’ev and F. A. Sukochev, Conjugation of weak and measure convergence in noncommutative symmetric spaces, Dokl. Akad. Nauk UzSSR 2 (1993), 8–9.

    Google Scholar 

  37. C. Lennard, A converse to a theorem of Komlós for convex subsets of L1, Pacific J. Math. 159 (1993), 75–85.

  38. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97, Springer-Verlag, Berlin-New York, 1979, Function spaces.

    Book  MATH  Google Scholar 

  39. P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on d-rings, Adv. inMath. 73 (1989), 204–241.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. R. Masani and H. Niemi, The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration, Adv. Math. 75 (1989), 121–167.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.

    Book  MATH  Google Scholar 

  42. L. C. Moore, Strictly increasing Riesz norms, Pacific J. Math. 37 (1971), 171–180.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Nakano, Ergodic theorems in semi-ordered linear spaces, Ann. of Math. 49 (2) (1948), 538–556.

    Article  MathSciNet  MATH  Google Scholar 

  44. C. J. Seifert, Averaging in Banach spaces, ProQuest LLC, Ann Arbor, MI, 1977, Thesis (Ph.D.)–Kent State University.

    Google Scholar 

  45. W. Szlenk, Sur les suites faiblement convergentes dans l’espace L, Studia Math. 25 (1965), 337–341.

    MathSciNet  MATH  Google Scholar 

  46. L. Weis, Integral operators and changes of density, Indiana Univ. Math. J. 31 (1982), 83–96.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, J. Austral. Math. Soc. Ser. A 24 (1977), 312–319.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gao.

Additional information

The authors were supported by NSERC grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Troitsky, V.G. & Xanthos, F. Uo-convergence and its applications to Cesàro means in Banach lattices. Isr. J. Math. 220, 649–689 (2017). https://doi.org/10.1007/s11856-017-1530-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1530-y

Navigation