Skip to main content
Log in

Packing, counting and covering Hamilton cycles in random directed graphs

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A Hamilton cycle in a digraph is a cycle that passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so-called Posá ‘rotation-extension’ technique for the undirected analogue. Let D(n, p) denote the random digraph on vertex set [n], obtained by adding each directed edge independently with probability p. Here we present a general and a very simple method, using known results, to attack problems of packing and counting Hamilton cycles in random directed graphs, for every edge-probability p > logC(n)/n. Our results are asymptotically optimal with respect to all parameters and apply equally well to the undirected case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and J. H. Spencer, The Probabilistic Method, third ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008.

    Book  MATH  Google Scholar 

  2. S. Ben-Shimon, M. Krivelevich and B. Sudakov, On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs, SIAM J. Discrete Math. 25 (2011), 1176–1193.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc. 286 (1984), 257–274.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bollobás and A. M. Frieze, On matchings and Hamiltonian cycles in random graphs, in Random graphs’ 83 (Poznań, 1983), North-Holland Math. Stud., Vol. 118, North-Holland, Amsterdam, 1985, pp. 23–46.

    MathSciNet  MATH  Google Scholar 

  5. B. Csaba, D. Kühn, A. Lo, D. Osthus and A. Treglown, Proof of the 1-factorization and Hamilton Decomposition Conjectures, Mem. Amer. Math. Soc. 244 (2016).

  6. B. Cuckler, Hamiltonian cycles in regular tournaments, Combin. Probab. Comput. 16 (2007), 239–249.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Cuckler and J. Kahn, Hamiltonian cycles in Dirac graphs, Combinatorica 29 (2009), 299–326.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. P. Egorychev, The solution of van der Waerden’s problem for permanents, Adv. in Math. 42 (1981), 299–305.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. I. Falikman, Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix, Mathematical Notes 29 (1981), 475–479.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ferber, M. Krivelevich and B. Sudakov, Counting and packing Hamilton cycles in dense graphs and oriented graphs, J. Combin. Theory Ser. B, to appear.

  12. A. Ferber, G. Kronenberg, F. Mousset and C. Shikhelman, Packing a randomly edgecolored random graph with rainbow k-outs, arXiv preprint arXiv:1410.1803 (2014).

    Google Scholar 

  13. A. Ferber, R. Nenadov, U. Peter, A. Noever and N. Škoric, Robust Hamiltonicity of random directed graphs, SODA’ 14.

  14. A. M. Frieze, An algorithm for finding Hamilton cycles in random directed graphs, J. Algorithms 9 (1988), 181–204.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Frieze and M. Krivelevich, On two Hamilton cycle problems in random graphs, Israel J. Math. 166 (2008), 221–234.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Frieze and S. Suen, Counting the number of Hamilton cycles in random digraphs, Random Structures Algorithms 3 (1992), 235–241.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Glebov and M. Krivelevich, On the number of Hamilton cycles in sparse random graphs, SIAM J. Discrete Math. 27 (2013), 27–42.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Glebov, M. Krivelevich and T. Szabó, On covering expander graphs by Hamilton cycles, Random Structures Algorithms 44 (2014), 183–200.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Hefetz, D. Kühn, J. Lapinskas and D. Osthus, Optimal covers with Hamilton cycles in random graphs, Combinatorica 34 (2014), 573–596.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Hefetz, A. Steger and B. Sudakov, Random directed graphs are robustly Hamiltonian, arXiv preprint arXiv:1404.4734 (2014).

    MATH  Google Scholar 

  21. S. Janson, The numbers of spanning trees, Hamilton cycles and perfect matchings in a random graph, Combin. Probab. Comput. 3 (1994), 97–126.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Janson, T. ’Luczak and A. Rucinski, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

    Book  MATH  Google Scholar 

  23. R. M. Karp, Reducibility among combinatorial problems, in Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York, 1972, pp. 85–103.

    Google Scholar 

  24. F. Knox, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Random Structures Algorithms 46 (2015), 397–445.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Krivelevich, On the number of Hamilton cycles in pseudo-random graphs, Electron. J. Combin. 19 (2012), Paper 25, 14.

  26. M. Krivelevich and W. Samotij, Optimal packings of Hamilton cycles in sparse random graphs, SIAM J. Discrete Math. 26 (2012), 964–982.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments, Adv. Math. 237 (2013), 62–146.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: applications, J. Combin. Theory Ser. B 104 (2014), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Lovász, Combinatorial Problems and Exercises, second ed., Akadémiai Kiadó, Budapest, and North-Holland, Amsterdam, 1993.

    MATH  Google Scholar 

  30. C. McDiarmid, Clutter percolation and random graphs, Math. Programming Stud. (1980), 17–25, Combinatorial optimization, II (Proc. Conf., Univ. East Anglia, Norwich, 1979).

    MATH  Google Scholar 

  31. C. S. J. A. Nash-Williams, Hamiltonian lines in graphs whose vertices have sufficiently large valencies, in Combinatorial Theory and its Applications, III (Proc. Colloq., Balatonf üred, 1969), North-Holland, Amsterdam, 1970, pp. 813–819.

    Google Scholar 

  32. L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. N. Sárközy, S. M. Selkow and E. Szemerédi, On the number of Hamiltonian cycles in Dirac graphs, Discrete Math. 265 (2003), 237–250.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Szele, Kombinatorikai vizsgalatok az iranyitott teljes graffal kapcsolatban, Mat. Fiz. Lapok 50 (1943), 223–256.

    MathSciNet  Google Scholar 

  35. C. Thomassen, Hamilton circuits in regular tournaments, in Cycles in graphs (Burnaby, B.C., 1982), North-Holland Math. Stud., Vol. 115, North-Holland, Amsterdam, 1985, pp. 159–162.

    MathSciNet  MATH  Google Scholar 

  36. T. W. Tillson, A Hamiltonian decomposition of K*2m , 2m ≥ 8, J. Combin. Theory Ser. B 29 (1980), 68–74.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. H. van Lint and R. M. Wilson, A course in combinatorics, second ed., Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  38. E. M. Wright, For how many edges is a digraph almost certainly Hamiltonian?, Proc. Amer. Math. Soc. 41 (1973), 384–388.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Kronenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferber, A., Kronenberg, G. & Long, E. Packing, counting and covering Hamilton cycles in random directed graphs. Isr. J. Math. 220, 57–87 (2017). https://doi.org/10.1007/s11856-017-1518-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1518-7

Navigation