Skip to main content
Log in

Embeddings of quotient division algebras of rings of differential operators

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let k be an algebraically closed field of characteristic zero, let X and Y be smooth irreducible algebraic curves over k, and let D(X) and D(Y) denote respectively the quotient division rings of the ring of differential operators of X and Y. We show that if there is a k-algebra embedding of D(X) into D(Y), then the genus of X must be less than or equal to the genus of Y, answering a question of the first-named author and Smoktunowicz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Artin, Some problems on three-dimensional graded domains, in Representation theory and algebraic geometry (Waltham, MA, 1995), London Math. Soc. Lecture Note Ser., Vol. 238, Cambridge Univ. Press, Cambridge, 1997, pp. 1–19.

    Chapter  Google Scholar 

  2. J. P. Bell, Division algebras of Gelfand-Kirillov transcendence degree 2, Israel J. Math. 171 (2009), 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. P. Bell and A. Smoktunowicz, Rings of differential operators on curves, Israel J. Math. 192 (2012), 297–310.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Chan and C. Ingalls, The minimal model program for orders over surfaces, Invent. Math. 161 (2005), 427–452.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, Vol. 57, Cambridge University Press, Cambridge, 1995, Theory of general division rings.

    Google Scholar 

  6. P. M. Cohn, Free ideal rings and localization in general rings, New Mathematical Monographs, Vol. 3, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  7. D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, Vol. 150, Springer- Verlag, New York, 1995, With a view toward algebraic geometry.

    Google Scholar 

  8. I. M. Gelfand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. (1966), 5–19.

    MATH  Google Scholar 

  9. K. R. Goodearl and J. T. Stafford, The graded version of Goldie’s theorem, in Algebra and its applications (Athens, OH, 1999), Contemp. Math., Vol. 259, Amer. Math. Soc., Providence, RI, 2000, pp. 237–240.

    Google Scholar 

  10. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), 231 pp.

    MATH  Google Scholar 

  11. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), 361 pp.

    MATH  Google Scholar 

  12. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977.

    Book  Google Scholar 

  13. J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, Vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983.

    Google Scholar 

  14. G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, revised ed., Graduate Studies in Mathematics, Vol. 22, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  15. L. Makar-Limanov, The skew field of fractions of the Weyl algebra contains a free noncommutative subalgebra, Comm. Algebra 11 (1983), 2003–2006.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid.

    MATH  Google Scholar 

  17. A. H. Schofield, Stratiform simple Artinian rings, Proc. London Math. Soc. (3) 53 (1986), 267–287.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407–414.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Tsen, Divisionsalgebren über funktionenkörpern, Nachr. Ges. Wiss. Göttingen, Math.- Phys. Kl. (1933), 335–339.

    Google Scholar 

  20. A. Yekutieli and J. J. Zhang, Homological transcendence degree, Proc. London Math. Soc. (3) 93 (2006), 105–137.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. J. Zhang, On Gelfand-Kirillov transcendence degree, Trans. Amer. Math. Soc. 348 (1996), 2867–2899.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. J. Zhang, On lower transcendence degree, Adv. Math. 139 (1998), 157–193.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, J.P., Ingalls, C. & Ramkumar, R. Embeddings of quotient division algebras of rings of differential operators. Isr. J. Math. 219, 411–430 (2017). https://doi.org/10.1007/s11856-017-1485-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1485-z

Navigation