Skip to main content
Log in

Roth’s theorem in many variables

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that if A ⊆ {1, ..., N} has no nontrivial solution to the equation x 1 + x 2 + x 3 + x 4 + x 5 = 5y, then \(|A| \ll Ne^{ - c(\log N)^{1/7} } \), c > 0. In view of the well-known Behrend construction, this estimate is close to best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proceedings of the National Academy of Sciences of the United States of America 23 (1946), 331–332.

    Article  MathSciNet  Google Scholar 

  2. J. Bourgain, On triples in arithmetic progression, Geometric and Functional Analysis 9 (1999), 968–984.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bourgain, Roth’s theorem on progressions revisited, Journal d’Analyse Mathématique 104 (2008), 155–192.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Bukh, Non-trivial solutions to a linear equation in integers, Acta Arithmetica 131 (2008), 51–55.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. C. Chang, A polynomial bound in Freiman’s theorem, Duke Mathematical Journal 113 (2002), 399–419.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Croot and O. Sisask, A probabilistic technique for finding almost-periods of convolutions, Geometric and Functional Analysis 20 (2010), 1367–1396.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Elkin, An improved construction of progression-free sets, Israel Journal of Mathematics 184 (2011), 93–128.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Green and T. Tao, Freiman’s theorem in finite fields via extremal set theory, Combinatorics, Probability and Computing 18 (2009), 335–355.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. R. Heath-Brown, Integer sets containing no arithmetic progressions, Journal of the London Mathematical Society 35 (1987), 385–394.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Koester, An extension of Behrend’s theorem, Online Journal of Analytic Combinatorics 8 (2008), Art. 4, 8.

  11. Y. R. Liu and C. V. Spencer, A generalization of Meshulam’s theorem on subsets of finite abelian groups with no 3-term arithmetic progression, Designs, Codes and Cryptography 52 (2009), 83–91.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, Journal of Combinatorial Theory. Series A 71 (1995), 168–172.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Moser, On non-averaging sets of integers, Canadian Journal of Mathematics 5 (1953), 245–252.

    Article  MATH  Google Scholar 

  14. R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetic progression, Proceedings of the Royal Society of Edinburgh 65 (1961), 332–344.

    MathSciNet  Google Scholar 

  15. K. F. Roth, On certain sets of integers, Journal of the London Mathematical Society 28 (1953), 104–109.

    Article  MATH  Google Scholar 

  16. I. Z. Ruzsa, Generalized arithemtic progresions and sumsets, Acta Mathematica Hungarica 65 (1994), 379–388.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Z. Ruzsa, Solving linear equations in sets of integers. I, Acta Arithmetica 65 (1993), 259–282.

    MATH  MathSciNet  Google Scholar 

  18. R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression, Proceedings of the National Academy of Sciences of the United States of America 28 (1942), 561–563.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Salem and D. C. Spencer, On sets which do not contain a given number of terms in arithmetical progression, Nieuw Archief voor Wiskunde 23 (1950), 133–143.

    MATH  MathSciNet  Google Scholar 

  20. T. Sanders, Roth’s theorem in n4 , Analysis & PDE 2 (2009), 211–234.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Sanders, Structure in sets with logarithmic doubling, Canadian Mathematical Bulletin, to appear. doi: http://dx.doi.org/10.4153/CMB-2011-165-0.

  22. T. Sanders, On the Bogolubov-Ruzsa Lemma, Analysis & PDE 5 (2012), 627–655.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Sanders, On Roth’s theorem on progressions, Annals of Mathematics 174 (2011), 619–636.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Schoen, Near optimal bounds in Freiman’s theorem, Duke Mathematical Journal 158 (2011), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  25. I. D. Shkredov, On sets of large exponential sums, Rossiĭskaya Akademiya Nauk. Izvestiya. Seriya Matematicheskaya 72 (2008), 161–182.

    Article  MathSciNet  Google Scholar 

  26. I. D. Shkredov, Some examples of sets of large exponential sums, Rossiĭskaya Akademiya Nauk. Matematichesiĭ Sbornik 198 (2007), 105–140.

    Article  MathSciNet  Google Scholar 

  27. E. Szemerédi, On sets of integers containing no arithmetic progressions, Acta Mathematica Hungarica 56 (1990), 155–158.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Vol. 105, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Schoen.

Additional information

The author is partly supported by MNSW grant N N201 543538.

The author is supported by grant RFFI NN 11-01-00759, Russian Government project 11.G34.31.0053, Federal Program “Scientific and scientific-pedagogical staff of innovative Russia” 2009–2013, grant mol a ved 12-01-33080 and grant Leading Scientific Schools N 2519.02012.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoen, T., Shkredov, I.D. Roth’s theorem in many variables. Isr. J. Math. 199, 287–308 (2014). https://doi.org/10.1007/s11856-013-0049-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-013-0049-0

Keywords

Navigation