Skip to main content
Log in

Quasisimple classical groups and their complex group algebras

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let H be a finite quasisimple classical group, i.e., H is perfect and S:= H/Z(H) is a finite simple classical group. We prove that, excluding the open cases when S has a very exceptional Schur multiplier such as PSL3(4) or PSU4(3), H is uniquely determined by the structure of its complex group algebra. The proofs make essential use of the classification of finite simple groups as well as the results on prime power character degrees and relatively small character degrees of quasisimple classical groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, Character degree graphs that are complete graphs, Proceedings of the American Mathematical Society 135 (2007), 671–676.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Brauer, Representations of finite groups, in Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175.

    Google Scholar 

  3. R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley and Sons, New York, 1985.

    MATH  Google Scholar 

  4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  5. C. W. Curtis, The Steinberg character of a finite group with a (B,N)-pair, Journal of Algebra 4 (1966), 433–441.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. C. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Mathematische Zeitschrift 119 (1971), 345–348.

    Article  MathSciNet  MATH  Google Scholar 

  7. The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.12, 2008, http://www.gap-system.org.

  8. R. M. Guralnick, Subgroups of prime power index in a simple group, Journal of Algebra 81 (1983), 304–311.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. M. Guralnick and P. H. Tiep, Cross characteristic representations of even characteristic symplectic groups, Transactions of the American Mathematical Society 356 (2004), 4969–5023.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. E. Harris, A universal mapping problem, covering groups and automorphism groups of finite groups, The Rocky Mountain Journal of Mathematics 7 (1977), 289–295.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Hawkes, On groups having isomorphic group algebras, Journal of Algebra 167 (1994), 557–577.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Huppert, Some simple groups which are determined by the set of their character degrees I, Illinois Journal of Mathematics 44 (2000), 828–842.

    MathSciNet  MATH  Google Scholar 

  13. I. M. Isaacs, Recovering information about a group from its complex group algebra, Archiv der Mathematik 47 (1986) 293–295.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Kimmerle, Group rings of finite simple groups. Around group rings, Resenhas do Instituto de Matemática e Estatística da Universidad de São Paulo 5 (2002), 261–278.

    MathSciNet  MATH  Google Scholar 

  15. M. W. Liebeck, E. A. O’Brien, A. Shalev and P. H. Tiep, The Ore conjecture, Journal of the European Mathematical Socirty 12 (2010), 939–1008.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Lübeck, Data for finite groups of Lie type and related algebraic groups, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html

  17. G. Malle and A. E. Zalesskii, Prime power degree representations of quasi-simple groups, Archiv der Mathematik 77 (2001), 461–468.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. D. Mazurov and E. I. Khukhro, Unsolved Problems in Group Theory, the Kourovka Notebook, 17th edition, Novosibirsk, 2010.

  19. A. Moretó, Complex group algebras of finite groups: Brauer’s problem 1, Advances in Mathematics 208 (2007), 236–248.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. N. Nguyen, Low-dimensional complex characters of the symplectic and orthogonal groups, Communications in Algebra 38 (2010), 1157–1197.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. H. Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups, Communications in Algebra 24 (1996), 2093–2167.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. P. Tong-Viet, Simple exceptional groups of Lie type are determined by their character degrees, Monatshefte für Mathematik 166 (2012), 559–577.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. P. Tong-Viet, Alternating and Sporadic simple groups are determined by their character degrees, Algebras and Representation Theory 15 (2012), 379–389.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. P. Tong-Viet, Simple classical groups are determined by their character degrees, Journal of Algebra 357 (2012), 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Zsigmondy, Zue theorie der potenzreste, Monatshefte für Mathematik und Physik 3 (1892), 265–284.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Ngoc Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H.N. Quasisimple classical groups and their complex group algebras. Isr. J. Math. 195, 973–998 (2013). https://doi.org/10.1007/s11856-012-0142-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0142-9

Keywords

Navigation