Skip to main content
Log in

Totally positive kernels, Pólya frequency functions, and their transforms

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The composition operators preserving total non-negativity and total positivity for various classes of kernels are classified, following three themes. Letting a function act by post composition on kernels with arbitrary domains, it is shown that such a composition operator maps the set of totally non-negative kernels to itself if and only if the function is constant or linear, or just linear if it preserves total positivity. Symmetric kernels are also discussed, with a similar outcome. These classification results are a byproduct of two matrix-completion results and the second theme: an extension of A. M. Whitney’s density theorem from finite domains to subsets of the real line. This extension is derived via a discrete convolution with modulated Gaussian kernels. The third theme consists of analyzing, with tools from harmonic analysis, the preservers of several families of totally non-negative and totally positive kernels with additional structure: continuous Hankel kernels on an interval, Pólya frequency functions, and Pólya frequency sequences. The rigid structure of post-composition transforms of totally positive kernels acting on infinite sets is obtained by combining several specialized situations settled in our present and earlier works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aissen, A. Edrei, I. J. Schoenberg and A. M. Whitney, On the generating functions of totally positive sequences, Proc. Natl. Acad. Sci. USA 37 (1951), 303–307.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing, New York, 1965.

    MATH  Google Scholar 

  3. T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219.

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. D. Bai and L.X. Zhang, Semicircle law for Hadamard products, SIAM J. Matrix Anal. Appl. 29 (2007), 473–495.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Banach, Sur l’équation fonctionelle f(x + y)= f(x)+f(y), Fund. Math. 1 (1920), 123–124.

    Article  MATH  Google Scholar 

  6. A. Belton, D. Guillot, A. Khare and M. Putinar, Matrix positivity preservers in fixed dimension. I, Adv. Math. 298 (2016), 325–368.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Belton, D. Guillot, A. Khare and M. Putinar, A panorama of positivity. Part I: Dimension free, in Analysis of Operators on Function Spaces, Birkhäuser/Springer, Cham, 2019, pp. 117–165.

    Chapter  MATH  Google Scholar 

  8. A. Belton, D. Guillot, A. Khare and M. Putinar, A panorama of positivity. Part II: Fixed dimension, Complex Analysis and Spectral Theory, American Mathematical Society, Providence, RI, 2020, pp. 109–150.

    MATH  Google Scholar 

  9. A. Belton, D. Guillot, A. Khare and M. Putinar, Moment-sequence transforms, J. Eur. Math. Soc. (JEMS) 24 (2022), 3109–3160.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Belton, D. Guillot, A. Khare and M. Putinar, Hirschman—Widder densities, Appl. Comput. Harmon. Anal. 60 (2022), 396–425.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Berenstein, S. Fomin and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49–149.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1–66.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Billingsley, Probability and Measure, John Wiley & Sons, New York, 1995.

    MATH  Google Scholar 

  14. S. Bochner, Hilbert distances and positive definite functions, Ann. of Math. (2) 42 (1941), 647–656.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Brenti, Unimodal, Log-concave, and Pólya Frequency Sequences in Combinatorics, American Mathematical Society, Providence, RI, 1989.

    Book  MATH  Google Scholar 

  16. F. Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995), 175–218.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Efron, Increasing properties of Pólya frequency functions, Ann. Math. Statist. 36 (1965), 272–279.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Fallat and C. R. Johnson, Totally Nonnegative Matrices, Princeton University Press, Princeton, NJ, 2011.

    Book  MATH  Google Scholar 

  19. S. Fallat, C. R. Johnson and R. L. Smith, The general totally positive matrix completion problem with few unspecified entries, Electron. J. Linear Algebra 7 (2000), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Fallat, C. R. Johnson and A. D. Sokal, Total positivity of sums, Hadamard products and Hadamard powers: Results and counterexamples, Linear Algebra Appl. 520 (2017), 242–259; Corrigendum, Linear Algebra Appl. 613 (2021), 393–396.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Fekete, Über ein Problem von Laguerre, Rend. Circ. Mat. Palermo 34 (1912), 89–120.

    Article  MATH  Google Scholar 

  22. C. H. FitzGerald and R. A. Horn, On fractional Hadamard powers of positive definite matrices, J. Math. Anal. Appl. 61 (1977), 633–642.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335–380.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Fomin and A. Zelevinsky, Total positivity: tests and parametrizations, Math. Intelligencer 22 (2000), 23–33.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. R. Gantmacher, The Theory of Matrices. Vols. 1, 2, Chelsea Publishing, New York, 1959.

    Google Scholar 

  26. F. R. Gantmacher and M. G. Krein, Sur les matrices complètement non negatives et oscillatoires, Compositio Math. 4 (1937), 445–476.

    MathSciNet  MATH  Google Scholar 

  27. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Chelsea Publishing, New York, 2002.

    Book  MATH  Google Scholar 

  28. M. Gasca and C. A. Micchelli, Total Positivity and its Applications, Springer, Dordrecht, 1996.

    Book  MATH  Google Scholar 

  29. K. Gröchenig, J. L. Romero and J. Stöckler, Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions, Invent. Math. 211 (2018), 1119–1148.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Guillot, A. Khare and B. Rajaratnam, Critical exponents of graphs, J. Combin. Theory Ser. A 139 (2016), 30–58.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Guillot, A. Khare and B. Rajaratnam, Preserving positivity for rank-constrained matrices, Trans. Amer. Math. Soc. 369 (2017), 6105–6145.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Hamburger, Bemerkungen zu einer Fragestellung des Herrn Pólya, Math. Z. 7 (1920), 302–322.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Helson, J.-P. Kahane, Y. Katznelson and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), 135–157.

    Article  MathSciNet  MATH  Google Scholar 

  34. I. I. Hirschman and D. V. Widder, The inversion of a general class of convolution transforms, Trans. Amer. Math. Soc. 66 (1949), 135–201.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. I. Hirschman and D. V. Widder, The Convolution Transform, Princeton University Press, Princeton, NJ, 1955.

    MATH  Google Scholar 

  36. R. A. Horn. The theory of infinitely divisible matrices and kernels, Trans. Amer. Math. Soc. 136 (1969), 269–286.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. A. Horn, Infinitely divisible positive definite sequences, Trans. Amer. Math. Soc. 136 (1969), 287–303.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Jain, Hadamard powers of some positive matrices, Linear Algebra Appl. 528 (2017), 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. R. Johnson and O. Walch, Critical exponents: old and new, Electron. J. Linear Algebra 25 (2012), 72–83.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Karlin, Total Positivity. Volume 1, Stanford University Press, Stanford, CA, 1968.

    MATH  Google Scholar 

  41. A. Khare and T. Tao, On the sign patterns of entrywise positivity preservers in fixed dimension, Amer. J. Math. 143 (2021), 1863–1929.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. S. Kim and F. Proschan, Total positivity, in Encyclopedia of Statistical Sciences, John Wiley & Sons, New York, 2006, pp. 8665–8672.

    Google Scholar 

  43. Y. Kodama and L. K. Williams, KP solitons, total positivity and cluster algebras, Proc. Natl. Acad. Sci. USA 108 (2011), 8984–8989.

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Kodama and L. K. Williams, KP solitons and total positivity for the Grassmannian, Invent. Math. 198 (2014), 637–699.

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry, Birkhäuser, Boston, MA, 1994, pp. 531–568.

    Chapter  Google Scholar 

  46. G. Lusztig, Total positivity and canonical bases, in Algebraic Groups and Lie Groups, Cambridge University Press, Cambridge, 1997, pp. 281–295.

    MATH  Google Scholar 

  47. E. Maló, Note sur les équations algébriques dont toutes les racines sont réelles, J. Math. Spéc. 4 (1895), 7–10.

    MATH  Google Scholar 

  48. A. Pinkus, Totally Positive Matrices, Cambridge University Press, Cambridge, 2010.

    MATH  Google Scholar 

  49. G. Pólya and I. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. reine angew. Math. 144 (1914), 89–113.

    MathSciNet  MATH  Google Scholar 

  50. A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO]

  51. K. Rietsch, Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties, J. Amer. Math. Soc. 16 (2003), 363–392.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York—London, 1973.

    MATH  Google Scholar 

  53. A. J. Rothman, E. Levina and J. Zhu, Generalized thresholding of large covariance matrices, J. Amer. Statist. Assoc. 104 (2009), 177–186.

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Schmudgen, The Moment Problem, Springer, Cham, 2017.

    Book  MATH  Google Scholar 

  55. I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108.

    Article  MathSciNet  MATH  Google Scholar 

  56. I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre—Pólya—Schur type, Proc. Natl. Acad. Sci. USA 33 (1947), 11–17.

    Article  MATH  Google Scholar 

  57. I. J. Schoenberg, On Pólya frequency functions. II. Variation-diminishing integral operators of the convolution type, Acta Sci. Math. (Szeged) 12 (1950), 97–106.

    MathSciNet  MATH  Google Scholar 

  58. I. J. Schoenberg, On Pólya frequency functions. I. The totally positive functions and their Laplace transforms, J. Anal. Math. 1 (1951), 331–374.

    Article  MATH  Google Scholar 

  59. I.J. Schoenberg and A. M. Whitney, On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. 74 (1953), 246–259.

    MathSciNet  MATH  Google Scholar 

  60. J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Vera’nderlichen, J. reine angew. Math. 140 (1911), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society, New York, 1943.

    Book  MATH  Google Scholar 

  62. W. Sierpińsky, Sur l’équation fonctionelle f(x + y)= f(x)+ f(y), Fund. Math. 1 (1920), 116–122.

    Google Scholar 

  63. H. L. Vasudeva, Positive definite matrices and absolutely monotonic functions. Indian J. Pure Appl. Math. 10 (1979), 854–858.

    MathSciNet  MATH  Google Scholar 

  64. D. G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), 459–483.

    Article  MathSciNet  MATH  Google Scholar 

  65. H. F. Weinberger, A characterization of the Pólya frequency functions of order 3, Applicable Anal. 15 (1983), 53–69.

    Article  MathSciNet  MATH  Google Scholar 

  66. A. M. Whitney, A reduction theorem for totally positive matrices, J. Anal. Math. 2 (1952), 88–92.

    Article  MathSciNet  MATH  Google Scholar 

  67. D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. Amer. Math. Soc. 40 (1934), 321–326.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Percy Deift for raising the question of classifying total positivity preservers and pointing out the relevance of such a result for current studies in mathematical physics. We also thank Alan Sokal for his comments on a preliminary version of the paper. A. B. is grateful for the hospitality of the Indian Institute of Science, Bangalore, where part of this work was carried out. D. G. was partially supported by a University of Delaware Research Foundation grant, by a Simons Foundation collaboration grant for mathematicians, and by a University of Delaware strategic initiative grant. A. K. was partially supported by Ramanujan Fellowship grant SB/S2/RJN-121/2017,MATRICS grant MTR/2017/000295, and SwarnaJayanti Fellowship grants SB/SJF/2019-20/14 and DST/SJF/MS/2019/3 from SERB and DST (Govt. of India), by grant F.510/25/CAS-II/2018(SAP-I) from UGC (Govt. of India), and by a Young Investigator Award from the Infosys Foundation. M. P. was partially supported by a Simons Foundation collaboration grant for mathematicians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apoorva Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belton, A., Guillot, D., Khare, A. et al. Totally positive kernels, Pólya frequency functions, and their transforms. JAMA 150, 83–158 (2023). https://doi.org/10.1007/s11854-022-0259-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0259-7

Navigation