Skip to main content
Log in

Sparse bounds for spherical maximal functions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the averages of a function f on ℝn over spheres of radius 0 < r < ∞ given by \({A_r}f(x) = \int_{{\mathbb{S}^{n - 1}}} {f(x - ry)d\sigma (y)} \), where σ is the normalized rotation invariant measure on 𝕊n−1. We prove a sharp range of sparse bounds for two maximal functions, the first the lacunary spherical maximal function, and the second the full maximal function.

$${M_{1ac}}f = \mathop {\sup }\limits_{j \in \mathbb{Z}} {A_{{2^j}}}f,\;\;\;{M_{\text{full}}}f = \mathop {\sup }\limits_{r > 0} {A_r}f.$$

The sparse bounds are very precise variants of the known Lp bounds for these maximal functions. They are derived from known Lp-improving estimates for the localized versions of these maximal functions, and the indices in our sparse bound are sharp. We derive novel weighted inequalities for weights in the intersection of certain Muckenhoupt and reverse Hölder classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bernicot, D. Frey and S. Petermichl, Sharpweighted normestimates beyond Calderón-Zygmund theory, Anal. PDE 9 (2016), 1079–1113.

    Article  MathSciNet  Google Scholar 

  2. S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), 253–272.

    Article  MathSciNet  Google Scholar 

  3. C. P. Calderón, Lacunary spherical means, Illinois J. Math. 23 (1979), 476–484.

    Article  MathSciNet  Google Scholar 

  4. L. Cladek and B. Krause, Improved endpoint bounds for the lacunary spherical maximal operator, ArXiv:1703.01508[math.CA].

  5. L. Cladek and Y. Ou, Sparse domination of Hilbert transforms along curves, Math. Res. Lett. 25 (2018), 415–436.

    Article  MathSciNet  Google Scholar 

  6. R. R. Coifman and G. Weiss, Book Review: Littlewood-Paley and multiplier theory, Bull. Amer. Math. Soc. 84 (1978), 242–250.

    Article  MathSciNet  Google Scholar 

  7. J. M. Conde-Alonso, A. Culiuc, F. Di Plinio and Y. Ou, A sparse domination principle for rough singular integrals, Anal. PDE 10 (2017), 1255–1284.

    Article  MathSciNet  Google Scholar 

  8. M. Cowling, J. Garcí a Cuerva and H. Gunawan, Weighted estimates for fractional maximal functions related to spherical means, Bull. Austral. Math. Soc. 66 (2002), 75–90.

    Article  MathSciNet  Google Scholar 

  9. A. Culiuc, F. Di Plinio and Y. Ou, Domination of multilinear singular integrals by positive sparse forms, J. Lond. Math. Soc. (2)98 (2018), 369–392.

    Article  MathSciNet  Google Scholar 

  10. A. Culiuc, R. Kesler and M. T. Lacey, Sparse bounds for the discrete cubic Hilbert transform, Anal. PDE 12 (2019), 1259–1272.

    Article  MathSciNet  Google Scholar 

  11. F. C. de França Silva and P. Zorin-Kranich, Sparse domination of sharp variational truncations, ArXiv:1604.05506[math.CA].

  12. F. Di Plinio, Y. Q. Do and G. N. Uraltsev, Positive sparse domination of variational Carleson operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), 1443–1458.

    MathSciNet  MATH  Google Scholar 

  13. J. Duoandikoetxea and L. Vega, Spherical means and weighted inequalities, J. London Math. Soc. (2) 53 (1996), 343–353.

    Article  MathSciNet  Google Scholar 

  14. R. L. Jones, A. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer.Math. Soc. 360 (2008), 6711–6742.

    Article  MathSciNet  Google Scholar 

  15. B. Krause, M. Lacey and M. Wierdl, On convergence of oscillatory ergodic Hilbert transforms, Indiana Univ. Math. J. 68 (2019), 641–662.

    Article  MathSciNet  Google Scholar 

  16. B. Krause and M. T. Lacey, A weak type inequality for maximal monomial oscillatory Hilbert transforms, ArXiv:1609.01564[math.CA].

  17. B. Krause and M. T. Lacey, Sparse bounds for maximally truncated oscillatory singular integrals, ArXiv:1701.05249[math.CA].

  18. B. Krause and M. T. Lacey, Sparse bounds for random discrete Carleson theorems, in 50 Years with Hardy Spaces, Birkhäuser, Cham, 2018, pp. 317–332.

    Chapter  Google Scholar 

  19. M. T. Lacey, An elementary proof of the A2 bound, Israel J. Math. 217 (2017), 181–195.

    Article  MathSciNet  Google Scholar 

  20. M. T. Lacey and D. Mena, The sparse T1 theorem, Houston J. Math. 43 (2016), 111–127.

    MathSciNet  MATH  Google Scholar 

  21. M. T. Lacey and S. Spencer, Scott, Sparse bounds for oscillatory and random singular integrals, ArXiv:1609.06364[math.CA].

  22. S. Lee, Endpoint estimates for the circular maximal function, Proc. Amer.Math. Soc. 131 (2003), 1433–1442.

    Article  MathSciNet  Google Scholar 

  23. A. K. Lerner, S. Ombrosi and I. P. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math. 319 (2017), 153–181.

    Article  MathSciNet  Google Scholar 

  24. K. Li, Two weight inequalities for bilinear forms, Collect. Math. 68 (2017), 129–144.

    Article  MathSciNet  Google Scholar 

  25. K. Li, C. Pérez, I. P. Rivera-Ríos and L. Roncal, Weighted norm inequalities for rough singular integral operators, J. Geom. Anal. 29 (2019), 2526–2564.

    Article  MathSciNet  Google Scholar 

  26. W. Littman, L p - L q-estimates for singular integral operators arising from hyperbolic equations, (1973), 479–481.

    MATH  Google Scholar 

  27. R. Manna, Weighted inequalities for spherical maximal operator, Proc. Japan Acad. Ser. AMath. Sci. 91 (2015), 135–140.

    Article  MathSciNet  Google Scholar 

  28. K. Moen, Sharp weighted bounds without testing or extrapolation, Arch.Math. (Basel) 99 (2012), 457–466.

    Article  MathSciNet  Google Scholar 

  29. R. Oberlin, Sparse bounds for a prototypical singular Radon transform, Canad. Math. Bull. 62 (2019), 405–415.

    Article  MathSciNet  Google Scholar 

  30. W. Schlag, A generalization of Bourgain’s circular maximal theorem, J. Amer. Math. Soc. 10 (1997), 103–122.

    Article  MathSciNet  Google Scholar 

  31. W. Schlag and C. D. Sogge, Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997), 1–15.

    Article  MathSciNet  Google Scholar 

  32. A. Seeger, T. Tao and J. Wright, Endpoint mapping properties of spherical maximal operators, J. Inst. Math. Jussieu 2 (2003), 109–144.

    Article  MathSciNet  Google Scholar 

  33. A. Seeger, T. Tao and J. Wright, Singular maximal functions and Radon transforms near L 1, 126 (2004), 607–647.

    Google Scholar 

  34. E. M. Stein, Maximal functions. I. Spherical means, 73 1976, 2174–2175.

    Google Scholar 

  35. R. S. Strichartz, Convolutions with kernels having singularities on a sphere, 148 (1970), 461–471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lacey.

Additional information

Research supported in part by National Science Foundation grant DMS-1600693, and by Australian Research Council grant DP160100153. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140, while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2017 Semester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacey, M.T. Sparse bounds for spherical maximal functions. JAMA 139, 613–635 (2019). https://doi.org/10.1007/s11854-019-0070-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0070-2

Navigation