Skip to main content
Log in

A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We introduce a correspondence principle (analogous to the Furstenberg Correspondence Principle) that allows one to extract an infinite random graph or hypergraph from a sequence of increasingly large deterministic graphs or hypergraphs. As an application we present a new (infinitary) proof of the hypergraph removal lemma of Nagle-Schacht-Rödl-Skokan and Gowers, which does not require the hypergraph regularity lemma and requires significantly less computation. This in turn gives new proofs of several corollaries of the hypergraph removal lemma, such as Szemerédi’s Theorem on arithmetic progressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ajtai and E. Szemerédi, Sets of lattice points that form no squares, Studia Sci. Math. Hungar. 9 (1974), 9–11.

    Google Scholar 

  2. N. Alon and A. Shapira, A characterization of the (natural) graph properties testable with one-sided error, Proc. of FOCS, 2005, pp. 429–438.

  3. F. Chung and R. Graham, Quasi-random hypergraphs, Random Structures Algorithms 1 (1990), 105–124.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Erdös, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), 113–121.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Frankl and V. Rödl, The uniformity lemma for hypergraphs, Graphs Combin. 8 (1992), 309–312.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures Algorithms 20 (2002), 131–164.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    MATH  MathSciNet  Google Scholar 

  8. H. Furstenberg, Recurrence in Ergodic theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    MATH  Google Scholar 

  9. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291.

    MATH  MathSciNet  Google Scholar 

  10. H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. 7 (1982), 527–552.

    MathSciNet  Google Scholar 

  11. J-Y. Girard, Herbrand’s theorem and proof theory, Proceedings of the Herbrand Symposium (Marseilles, 1981), North-Holland, Amsterdam, 1982, pp. 29–38.

    Google Scholar 

  12. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), 143–184.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, preprint. See also arXiv:0710.3032

  14. B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math., to appear. See also arXiv:math/0404188

  15. B. Host, Progressions arithmétiques dans les nombres premiers (d’aprés B. Green and T. Tao), Séminaire Bourbaki, Mars 2005, 57eme année, 2004–2005, no. 944.

  16. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics, Paul Erdos is Eighty, Vol. 2 (Keszthely, 1993), János Bolyai Math. Soc., Budapest, 1996, pp. 295–352.

    Google Scholar 

  18. B. Kra, The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view, Bull. Amer. Math. Soc. (N.S.) 43 (2006), 3–23.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006), 933–957.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures Algorithms, 28 (2006), 113–179.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Rödl and M. Schacht, Regular partitions of hypergraphs: Counting Lemmas, Combin. Probab. Comput. 16 (2007), 887–901.

    MATH  MathSciNet  Google Scholar 

  22. V. Rödl, M. Schacht, E. Tengan and N. Tokushige, Density theorems and extremal hypergraph problems, Israel J. Math. 152 (2006), 371–380.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures Algorithms 25 (2004), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006), 180–194.

    Article  MATH  MathSciNet  Google Scholar 

  25. I. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol II, North-Holland, Amsterdam-New York, 1978, pp. 939–945.

    Google Scholar 

  26. J. Solymosi, Note on a generalization of Roth’s theorem, Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 825–827.

    Google Scholar 

  27. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Szemerédi, Regular partitions of graphs, Problémes Combinatoires et Théorie des Graphes, (Colloq. Internat. CNRS, Univ. Orsay, 1976), CNRS, Paris, 1978, pp. 399–401.

    Google Scholar 

  29. T. Tao, Szemerédi’s regularity lemma revisited, Contrib. Discrete Math. 1 (2006), 8–28.

    MATH  MathSciNet  Google Scholar 

  30. T. Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, Electron. J. Combin. 13 (2006) #R 99.

    Google Scholar 

  31. T. Tao, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A 113 (2006), 1257–1280.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Tao, The Gaussian primes contain arbitrarily shaped constellations, J. Analyse Math. 99 (2006), 109–176.

    MATH  Google Scholar 

  33. T. Tao, An ergodic transference theorem, unpublished.

  34. P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358–360.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T. A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma. J Anal Math 103, 1–45 (2007). https://doi.org/10.1007/s11854-008-0001-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0001-0

Keywords

Navigation