Skip to main content
Log in

Hyaluronsäure in der oralen Regeneration

  • Übersichtsbeitrag
  • Published:
wissen kompakt Aims and scope

Zusammenfassung

Autologe Transplantate und Biomaterialien, z. B. Knochenersatzmaterialien (KEM), werden zur oralen Regeneration eingesetzt. Mittels der „Biofunktionalisierung“, z. B. mit Hyaluronsäure, sollen dabei die durch den Aufbereitungsprozess der Biomaterialien bedingten möglichen „biologischen Limitationen“ im Vergleich zu autologen Transplantaten, z. B. Azellularität, kompensiert werden. Die Hyaluronsäure lässt sich erfolgversprechend im Rahmen der oralen Regeneration entweder allein oder in Kombination mit Biomaterialien zur Knochen- und Weichgeweberegeneration (KEM und Membranen) einsetzen. Eine abschließende Bewertung ist derzeit noch nicht möglich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. On SW, Park SY, Yi SM, Park IY, Byun SH, Yang BE (2023) Current Status of Recombinant Human Bone Morphogenetic Protein‑2 (rhBMP-2) in Maxillofacial Surgery: Should It Be Continued? Bioengineering (Basel) 10 (9). https://doi.org/10.3390/bioengineering10091005

  2. Sotova C, Yanushevich O, Kriheli N, Grigoriev S, Evdokimov V, Kramar O, Nozdrina M, Peretyagin N, Undritsova N, Popelyshkin E, Peretyagin P (2023) Dental Implants: Modern Materials and Methods of Their Surface. Modif Mater (basel). https://doi.org/10.3390/ma16237383

    Article  Google Scholar 

  3. Quirynen M, Siawasch S, Temmerman A, Cortellini S, Dhondt R, Teughels W, Castro AB (2023) Do autologous platelet concentrates (APCs) have a role in intra-oral bone regeneration? A critical review of clinical guidelines on decision-making process. Periodontol 2000 93(1):254–269. https://doi.org/10.1111/prd.12526

    Article  PubMed  Google Scholar 

  4. Lee JH, Jeong SN (2024) Long-term results of regenerative treatment of intrabony defects: a cohort study with 5‑year follow-up. Bmc Oral Health 24(1):34. https://doi.org/10.1186/s12903-023-03820-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yun J, Lee J, Kim S, Koo KT, Seol YJ, Lee YM (2022) The effect of hard-type crosslinked hyaluronic acid with particulate bone substitute on bone regeneration: positive or negative? J Periodontal Implant Sci 52(4):312–324. https://doi.org/10.5051/jpis.2104700235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bravo B, Correia P, Gonçalves JJE, Sant’Anna B, Kerob D (2022) Benefits of topical hyaluronic acid for skin quality and signs of skin aging: From literature review to clinical evidence. Dermatol Ther 35(12):e15903. https://doi.org/10.1111/dth.15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang HS, Lee CS (2023) Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels. https://doi.org/10.3390/gels9070588

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sprott H, Fleck C (2023) Hyaluronic Acid in Rheumatology. Pharmaceutics. https://doi.org/10.3390/pharmaceutics15092247

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L (2023) 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res 27(1):137. https://doi.org/10.1186/s40824-023-00460-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kyyak S, Pabst A, Heimes D, Kämmerer PW (2021) The Influence of Hyaluronic Acid Biofunctionalization of a Bovine Bone Substitute on Osteoblast Activity In. Vitro Mater (basel). https://doi.org/10.3390/ma14112885

    Article  Google Scholar 

  11. Kyyak S, Blatt S, Wiesmann N, Smeets R, Kaemmerer PW (2022) Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In. Vivo Mater (basel). https://doi.org/10.3390/ma15113839

    Article  Google Scholar 

  12. Kauffmann F, Fickl S, Sculean A, Fischer KR, Friedmann A (2023) Alveolar ridge alterations after lateral guided bone regeneration with and without hyaluronic acid: a prospective randomized trial with morphometric and histomorphometric evaluation. Quintessence Int 54(9):712–722. https://doi.org/10.3290/j.qi.b4171703

    Article  PubMed  Google Scholar 

  13. Rakašević D, Šćepanović M, Mijailović I, Mišić T, Janjić B, Soldatović I, Marković A (2023) Reconstructive Peri-Implantitis Therapy by Using Bovine Bone Substitute with or without Hyaluronic Acid: A Randomized Clinical Controlled Pilot Study. J Funct Biomater. https://doi.org/10.3390/jfb14030149

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ostos-Aguilar BI, Pinheiro Furquim C, Muniz F, Faveri M, Meza-Mauricio J (2023) Clinical efficacy of hyaluronic acid in the treatment of periodontal intrabony defect: a systematic review and meta-analysis. Clin Oral Investig 27(5):1923–1935. https://doi.org/10.1007/s00784-022-04855-6

    Article  PubMed  Google Scholar 

  15. Onisor F, Bran S, Mester A, Voina-Tonea A (2022) Efficiency of Hyaluronic Acid in Infrabony Defects: A Systematic Review of Human Clinical Trials. Med (kaunas). https://doi.org/10.3390/medicina58050580

    Article  Google Scholar 

  16. Pilloni A, Marini L, Gagliano N, Canciani E, Dellavia C, Cornaghi LB, Costa E, Rojas MA (2023) Clinical, histological, immunohistochemical, and biomolecular analysis of hyaluronic acid in early wound healing of human gingival tissues: A randomized, split-mouth trial. J Periodontol 94(7):868–881. https://doi.org/10.1002/jper.22-0338

    Article  CAS  PubMed  Google Scholar 

  17. Abaza G, Gaber AHK, Afifi NS, Adel-Khattab D (2023) Injectable platelet rich fibrin versus hyaluronic acid with bovine derived xenograft for alveolar ridge preservation. A randomized controlled clinical trial with histomorphometric analysis. Clin Implant Dent Relat Res. https://doi.org/10.1111/cid.13289

    Article  PubMed  Google Scholar 

  18. Domic D, Bertl K, Lang T, Pandis N, Ulm C, Stavropoulos A (2023) Hyaluronic acid in tooth extraction: a systematic review and meta-analysis of preclinical and clinical trials. Clin Oral Investig 27(12):7209–7229. https://doi.org/10.1007/s00784-023-05227-4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kloss FR, Kämmerer PW, Kloss-Brandstätter A (2023) First Clinical Case Report of a Xenograft-Allograft Combination for Alveolar Ridge Augmentation Using a Bovine Bone Substitute Material with Hyaluronate (Cerabone(®) Plus) Combined with Allogeneic Bone Granules (Maxgraft(®)). J Clin Med. https://doi.org/10.3390/jcm12196214

    Article  PubMed  PubMed Central  Google Scholar 

  20. Husseini B, Friedmann A, Wak R, Ghosn N, Senni K, Changotade S, Khoury G, Younes R (2023) The “HAT-TRICK” technique: A modification of soft tissue grafting using volume stable collagen matrix and cross-linked hyaluronic acid. Part A: The pontic site. J Stomatol Oral Maxillofac Surg 125(5):101754. https://doi.org/10.1016/j.jormas.2023.101754

    Article  PubMed  Google Scholar 

  21. Górski B, Skierska I, Szerszeń M, Mańka-Malara K (2023) Tunnel technique with cross-linked hyaluronic acid in addition to subepithelial connective tissue graft, compared with connective tissue graft alone, for the treatment of multiple gingival recessions: 6‑month outcomes of a randomized clinical trial. Clin Oral Investig 27(5):2395–2406. https://doi.org/10.1007/s00784-023-04887-6

    Article  PubMed  Google Scholar 

  22. Yurttutan E, Dereci Ö, Karagöz MA (2023) Biomechanical and Histologic Evaluation of Osseointegration of Titanium Dental Implants Modified by Various Combinations of Sandblasting, Acid-Etching, Hydroxyapatite, and Hyaluronic Acid Coating Techniques. Int J Oral Maxillofac Implants 38(3):583–590. https://doi.org/10.11607/jomi.9935

    Article  PubMed  Google Scholar 

  23. Lupi SM, Rodriguez YBA, Cassinelli C, Iviglia G, Tallarico M, Morra M, Rodriguez YBR (2019) Covalently-Linked Hyaluronan versus Acid Etched Titanium Dental Implants: A Crossover RCT in Humans. Int J Mol Sci. https://doi.org/10.3390/ijms20030763

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jung RE, Zembic A, Pjetursson BE, Zwahlen M, Thoma DS (2012) Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res 23 Suppl 6:2–21. https://doi.org/10.1111/j.1600-0501.2012.02547.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pabst.

Ethics declarations

Interessenkonflikt

A. Pabst, F. Kauffmann und P. W. Kämmerer erhielten Referentenhonorare und Forschungsunterstützung durch die Straumann AG, botiss biomaterials GmbH und das International Team for Implantology (ITI). Es besteht im Zusammenhang mit diesem Artikel kein Interessenkonflikt. Die Inhalte dieses Artikels stellen keine Meinung der Bundeswehr dar.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

P. W. Kämmerer, Mainz

M. Schmitter, Würzburg

J. M. Stein, Aachen

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabst, A., Kauffmann, F. & Kämmerer, P.W. Hyaluronsäure in der oralen Regeneration. wissen kompakt (2024). https://doi.org/10.1007/s11838-024-00190-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11838-024-00190-6

Schlüsselwörter

Navigation