Skip to main content
Log in

Heat Treatment Optimization of Laser Powder Bed Fusion Formed WC/18Ni300 Maraging Steel Composites

  • Phase Transformation and Microstructure Evolution during Thermomechanical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The 15% WC particle reinforced maraging steel 300 composites were fabricated by laser powder bed fusion. The effects of solid solution temperature, solid solution time, and aging temperature on the mechanical properties and morphology of the composite were then investigated using the response surface approach. The results show that the three heat treatment parameters have an interaction effect on yield strength and Rockwell hardness. The optimum heat treatment parameters obtained using the response surface method are solid solution at 846°C for 51 min and aging at 388°C for 300 min. After heat treatment, the melt pool of the sample formed by laser powder bed fusion disappears. The morphology is inhomogeneous cellular crystals and dendritic crystals before heat treatment. After the optimal and the worst heat treatments, the microstructure transforms into lath and acicular martensite, and its uniformity is remarkably improved. The heat treatment prompts mutual dissolution and diffusion between the WC reinforcing particles and the maraging steel 300 composites. The precipitated phases are dispersed along the grain boundary, and the thickness of the diffusion layer increases. After optical heat treatment, the composites' yield strength and Rockwell hardness increase by 129.4% and 52.3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Elangeswaran, K. Gurung, R. Koch, A. Cutolo, and B. Van Hooreweder, Fatigue Fract. Eng. Mater. Struct. 43, 2359 (2020).

    Article  Google Scholar 

  2. X. Yan, C. Chen, R. Zhao, W. Ma, R. Bolot, J. Wang, Z. Ren, H. Liao, and M. Liu, Surf. Coat. Technol. 371, 355 (2019).

    Article  Google Scholar 

  3. J. Mutua, S. Nakata, T. Onda, and Z. Chen, Mater. Des. 139, 486 (2018).

    Article  Google Scholar 

  4. Y. Wei, G. Chen, M. Li, W. Li, Y. Zhou, J. Xu, and W. Zhou, J. Manuf. Process. 84, 750 (2022).

    Article  Google Scholar 

  5. Z. Zhang, R. Wang, Y. Lv, W. Liu, and Y. Liu, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 851, 143588 (2022).

    Article  Google Scholar 

  6. R. Han, X. Li, H. Chen, Y. Peng, D. Yan, and K. Wang, J. Mater. Res. Technol. JMRT 24, 4517 (2023).

    Article  Google Scholar 

  7. B. Almangour, D. Grzesiak, T. Borkar, and J. Yang, Mater. Des. 138, 119 (2018).

    Article  Google Scholar 

  8. C. Jiang, J. Liu, Y. Wang, S. Luo, and B. Niu, Trans. Indian Inst. Met. 76, 1635 (2023).

    Article  Google Scholar 

  9. J. Huebner, P. Rutkowski, A. Dębowska, and D. Kata, Mater. 13, 2932 (2020).

    Article  Google Scholar 

  10. A. Malakizadi, D. Mallipeddi, S. Dadbakhsh, R. M’Saoubi, and P. Krajnik, Int. J. Mach. Tools Manuf 179, 103908 (2022).

    Article  Google Scholar 

  11. S. Yin, C. Chen, X. Yan, X. Feng, R. Jenkins, P. O’Reilly, M. Liu, H. Li, and R. Lupoi, Addit. Manuf. 22, 592 (2018).

    Google Scholar 

  12. J.H. Yu, Q. Jin, K. Ha, and W. Lee, Appl. Sci.-Basel. 13, 6572 (2023).

    Article  Google Scholar 

  13. K. Wang, H. Long, Y. Chen, M. Baniassadi, Y. Rao, and Y. Peng, Compos. Pt. A-Appl. Sci. Manuf. 147, 106460 (2021).

    Article  Google Scholar 

  14. J. Kobylinski, L. Hitzler, R. Lawitzki, C. Krempaszky, A. Öchsner, and E. Werner, Isr. J. Chem. 60, 607 (2020).

    Article  Google Scholar 

  15. C. Wei, Z. Zhao, H. Ye, Y. Yang, J. Tang, X. Shen, and G. Le, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 833, 142561 (2022).

    Article  Google Scholar 

  16. M. Masoumi, I.F. de Barros, L.F.G. Herculano, H.L.F. Coelho, and H.F.G. de Abreu, Mater Charact 120, 203 (2016).

    Article  Google Scholar 

  17. L.P.M. Dos Santos, M. Béreš, M.O. de Castro, P.W.C. Sarvezuk, L. Wu, L.F.G. Herculano, A. Paesano, C.C. Silva, M. Masoumi, and H.F.G. de Abreu, JOM 72, 3502 (2020).

    Article  Google Scholar 

  18. C. Chen, Y. Xie, X. Yan, R. Huang, M. Kuang, W. Ma, R. Zhao, J. Wang, M. Liu, Z. Ren, and H. Liao, J. Alloys Compd. 785, 499 (2019).

    Article  Google Scholar 

  19. M.J. Paul, Y. Muniandy, J.J. Kruzic, U. Ramamurty, and B. Gludovatz, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 844, 143167 (2022).

    Article  Google Scholar 

  20. J. Yi, B. Niu, L. Pan, X. Zou, Y. Cao, X. Wang, J. Luo, and Y. Hu, Surf. Coat. Technol. 447, 128823 (2022).

    Article  Google Scholar 

  21. J. Hu, H. Zhu, J. Zhang, M. Ouyang, C. Qiu, and J.A. Duan, J. Mater. Process. Technol. 296, 117213 (2021).

    Article  Google Scholar 

  22. B. Yao, Z. Li, B. Teng, and J. Liu, Rapid Prototyp. J 29, 1240 (2023).

    Article  Google Scholar 

  23. H. Majdi, J.A. Esfahani, and M. Mohebbi, Comput. Electron. Agric. 156, 574 (2019).

    Article  Google Scholar 

  24. Z. Zhang, J. Yan, X. Lu, T. Zhang, and H. Wang, J. Mater. Res. Technol. JMRT. 24, 6923 (2023).

    Article  Google Scholar 

  25. B.S. Mohammed, V.C. Khed, and M.F. Nuruddin, J. Clean. Prod. 171, 1605 (2018).

    Article  Google Scholar 

  26. C.C. Nwaeju, F.O. Edoziuno, and E.E. Nnuka, Mater. Today: Proc. 56, 2371 (2022).

    Google Scholar 

  27. Y. Cao, S. Chen, H. Zhang, J. Feng, J. Sun, and W. Shi, Mater. Today Commun. 30, 103203 (2022).

    Article  Google Scholar 

  28. K.M. Prasath, and R. Madesh, Mater. Today Proc. 46, 7119 (2021).

    Article  Google Scholar 

  29. K. Umanath, K. Palanikumar, V. Sankaradass, and K. Uma, Mater. Today Proc. 46, 4019 (2021).

    Article  Google Scholar 

  30. Y. Bai, C. Zhao, J. Yang, R. Hong, C. Weng, and H. Wang, J. Mater. Process. Technol. 288, 116906 (2021).

    Article  Google Scholar 

  31. P. Nandwana, R. Kannan, D. N. Leonard, O. R. T. U. Oak Ridge National Lab. Ornl, JOM. 72, 4221(2020).

  32. T. Allam, K.G. Pradeep, P. Köhnen, A. Marshal, J.H. Schleifenbaum, and C. Haase, Addit. Manuf. 36, 101561 (2020).

    Google Scholar 

  33. Y. Guo, H. Su, H. Gao, Z. Shen, Y. Liu, D. Zhao, P. Yang, Q. Hu, and Z. Zhang, J. Mater. Sci. Technol. 163, 81 (2023).

    Article  Google Scholar 

  34. F.F. Conde, J.D. Escobar, J.P. Oliveira, A.L. Jardini, W.W. Bose-Filho, and J.A. Avila, Addit. Manuf. 29, 100804 (2019).

    Google Scholar 

  35. T. Tekin, G. Ischia, F. Naclerio, R. Ipek, and A. Molinari, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 872, 144921 (2023).

    Article  Google Scholar 

  36. R. Casati, J. Lemke, A. Tuissi, and M. Vedani, Metals. 6, 218 (2016).

    Article  Google Scholar 

  37. N. Kang, W. Ma, L. Heraud, M. El Mansori, F. Li, M. Liu, and H. Liao, Addit. Manuf. 22, 104 (2018).

    Google Scholar 

  38. H. Azizi, R. Ghiaasiaan, R. Prager, M.H. Ghoncheh, K.A. Samk, A. Lausic, W. Byleveld, and A.B. Phillion, Addit. Manuf. 27, 389 (2019).

    Google Scholar 

  39. O. Ertugrul, T. He, R.N. Shahid, and S. Scudino, J. Alloys Compd. 808, 151732 (2019).

    Article  Google Scholar 

  40. Z. Yuan, H. Liu, Z. Ma, X. Ma, K. Wang, and X. Zhang, J. Alloys Compd. 928, 166985 (2022).

    Article  Google Scholar 

  41. X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski, R. Huang, W. Ma, H. Liao, and M. Liu, Surf. Coat. Technol. 371, 161 (2019).

    Article  Google Scholar 

  42. J. Wang, L. Li, and W. Tao, Opt. Laser Technol. 82, 170 (2016).

    Article  Google Scholar 

  43. J. Luo, J. Xu, and Z. Zhong, Rare Met. 32, 496 (2013).

    Article  Google Scholar 

  44. S. Zhou, X. Dai, and H. Zheng, Opt. Laser Technol. 44, 190 (2012).

    Article  Google Scholar 

  45. D. Gu, J. Ma, H. Chen, K. Lin, and L. Xi, Compos. Struct. 192, 387 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The project was funded by the Yunnan Fundamental Research Projects (202101AU070014), Project of the Science and Technology Major Project of Yunnan Province (202202AG050007), and Scientific Research Foundation of Yunnan Provincial Education Department (2022J0053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibo Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, X., Fan, H., Yao, B. et al. Heat Treatment Optimization of Laser Powder Bed Fusion Formed WC/18Ni300 Maraging Steel Composites. JOM (2024). https://doi.org/10.1007/s11837-024-06609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06609-z

Navigation