Skip to main content
Log in

Elemental Distribution Modification Toward Target Calcium Roasting of Vanadium-Bearing Slags

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The elemental distributions among various phases in vanadium-bearing slags have been quantified toward high-efficiency separation and extraction by calcium roasting using electron probe X-ray microanalysis. The roles of the roasting conditions were clarified, including roasting temperature, roasting time, and calcium amount. It was found that, with increasing roasting temperature, the V2O5 concentration in the target vanadium-enriched phase, predominantly in a form of 2(Ca,Mn)O·V2O5, decreased along with more SiO2 and Fe2O3 in this phase; while, with increasing roasting time, the V2O5 concentration in the vanadium-enriched phase increased due to a more complete reaction. However, a higher calcium addition induced a lower V2O5 concentration in the vanadium-enriched phase and, therefore, a CaO/V2O5 weight ratio of 0.6 was employed. In addition to the vanadium-enriched phase, the solubilities, especially V2O5 in the SiO2 and Fe2O3 solid solutions under varying roasting conditions, were also identified for a reduction of vanadium loss. Based on those quantitative results, the main principles to target to adjust the elemental distributions among various phases during the calcium roasting of vanadium-bearing slags are discussed toward a low-cost and high-efficiency vanadium extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7
Fig. 8 
Fig. 9 

Similar content being viewed by others

References

  1. J. Zhang, W. Zhang, L. Zhang, and W. Gu, Solvent Extr. Ion Exch. 32, 221 (2014).

    Article  Google Scholar 

  2. K. Hu, X. Liu, and Q. Li, Metall. Mater. Trans. B 48, 1342 (2017).

    Article  Google Scholar 

  3. D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, Hydrometallurgy 1, 202 (2007).

    Article  Google Scholar 

  4. K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, and S. Tasnim, J. Energy Storage 25, 100844 (2019).

    Article  Google Scholar 

  5. D. Rappleye, and R. Haun, J. Sustain. Metall. 7, 755 (2021).

    Article  Google Scholar 

  6. A.G. Arbat, E.A. Fesaghandis, A.T. Tabrizi, and H. Aghajani, Trans. Indian Inst. Met. 73, 2355 (2020).

    Article  Google Scholar 

  7. A.S. Alanaghi, A.J. Zamharir, H. Aghajani, and A.T. Tabrizi, Min. Metall. Explor., 39, 1753 (2022).

    Google Scholar 

  8. J. Zhang, W. Zhang, and Z. Xue, Metals 9, 21 (2019).

    Article  Google Scholar 

  9. K. Wu, Y. Wang, X. Wang, S. Wang, B. Liu, et al., J. Clean. Prod. 203, 873 (2018).

    Article  Google Scholar 

  10. G. Zhang, D. Luo, C. Deng, L. Lv, B. Liang, and C. Li, J. Alloys Compd. 742, 504 (2018).

    Article  Google Scholar 

  11. L. Chen, M. Chen, Y. Sun, and X. Ma, Metall. Mater. Trans. B 54, 1618 (2023).

    Article  Google Scholar 

  12. Y. Sun, L. Chen, M. Chen, and X. Ma, Metall. Mater. Trans. B 55, 242–250 (2024).

    Article  Google Scholar 

  13. J. Diao, B. Xie, C. Ji, X. Guo, Y. Wang, et al., Cryst. Res. Technol. 44, 707 (2009).

    Article  Google Scholar 

  14. Z. Wang, L. Chen, T. Aldahrib, C. Li, W. Liu, et al., Hydrometallurgy 191, 105156 (2020).

    Article  Google Scholar 

  15. X. Li, B. Xie, G. Wang, and X. Li, Trans. Nonferrous Met. Soc. China 21, 1860 (2011).

    Article  Google Scholar 

  16. H. Li, K. Wang, W. Hua, Z. Yang, W. Zhou, and B. Xie, Hydrometallurgy 160, 18–25 (2016).

    Article  Google Scholar 

  17. J. Xiang, Q. Huang, X. Lv, and C. Bai, J. Hazard. Mater. 336, 1 (2017).

    Article  Google Scholar 

  18. Y. Ji, S. Shen, J. Liu, and Y. Xue, J. Clean. Prod. 149, 1068 (2017).

    Article  Google Scholar 

  19. H. Li, H. Fang, K. Wang, W. Zhou, Z. Yang, et al., Hydrometallurgy 156, 124 (2015).

    Article  Google Scholar 

  20. L. Liu, Z. Wang, H. Du, S. Zheng, U. Lassi, et al., Int. J. Miner. Process. 160, 1–7 (2017).

    Article  Google Scholar 

  21. Z. Wang, S. Zheng, S. Wang, Y. Qin, H. Du, et al., Hydrometallurgy 151, 51 (2015).

    Article  Google Scholar 

  22. J. Zhang, W. Zhang, L. Zhang, and S. Gu, Int. J. Miner. Process. 138, 20 (2015).

    Article  Google Scholar 

  23. J. Xiang, Q. Huang, X. Lv, and C. Bai, J. Clean. Prod. 170, 1089 (2018).

    Article  Google Scholar 

  24. Z. Yang, H. Li, X. Yin, Z. Yan, X. Yan, et al., Int. J. Miner. Process. 133, 105 (2014).

    Article  Google Scholar 

  25. H. Fang, H. Li, T. Zhang, B. Liu, and B. Xie, ISIJ Int. 55, 200 (2015).

    Article  Google Scholar 

  26. Y. Sun, M. Chen, Z. Cui, L. Contreras, and B. Zhao, Metall. Mater. Trans. B 51, 1 (2020).

    Article  Google Scholar 

  27. Y. Sun, M. Chen, Z. Cui, L. Contreras, and B. Zhao, Metall. Mater. Trans. B 51, 426 (2020).

    Article  Google Scholar 

  28. M. Chen, Y. Sun, E. Balladares, C. Pizarro, and B. Zhao, Calphad 66, 101642 (2019).

    Article  Google Scholar 

  29. D. Feng, J. Zhang, M. Li, M. Chen, and B. Zhao, Ceram. Int. 46, 24053 (2020).

    Article  Google Scholar 

  30. D. Feng, M. Li, S.L. Yee, Y. Jiang, M. Chen, et al., J. Am. Ceram. Soc., 104, 4843 (2021).

    Article  Google Scholar 

  31. Y. Waseda, and J.M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  32. Y. Sun, M. Chen, and B. Zhao, J. Non-Cryst. Solids 515, 50 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (52274415), The National Science Fund for Overseas Excellent Young Scholars (21FAA01748) and the PANYAN-UQ Collaborative Research Project (2019001288) for financial support. The authors also acknowledge the facilities and the scientific and technical assistance from the Australian Microscopy & Microanalysis Research Facility, Centre for Microscopy and Microanalysis, The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Ma, X., Chen, M. et al. Elemental Distribution Modification Toward Target Calcium Roasting of Vanadium-Bearing Slags. JOM (2024). https://doi.org/10.1007/s11837-024-06603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06603-5

Navigation