Skip to main content
Log in

Plastic Deformation in Aluminum Columnar Nanograins

  • Nanostructured Materials in Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of grain size and grain boundary misorientation on the deformation behavior of aluminum columnar nanograins under uniaxial tension in the direction parallel or perpendicular to grain boundaries are studied by molecular dynamics simulation. The results suggest that the average flow stress depends on grain size, grain boundary misorientation and directions of applied loading. The optimal grain size corresponding to the highest average flow strength is lower in columnar models than in the equiaxed random orientation models, and columnar models have higher strength. The formation of shear band occurs in the small grain size models (< 10 nm) with high-angle grain boundaries under columnar directional tension, and the deformation progresses from dislocation activities to shear bands formation. The deformed columnar grains were found to present different dislocation slip systems based on their different crystallographic orientation and load conditions. The high-angle grain boundary models subjected to tension in a direction perpendicular to the grain boundaries exhibit significant variations in plastic strain. These results also indicate that grain boundary activities such as migration and sliding increase in intensity with decreasing grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  2. H. Van Swygenhoven and J.R. Weertman, Mater. Today 9, 24 (2006).

    Article  Google Scholar 

  3. V. Yamakov, D. Wolf, S. Phillpot, A. Mukherjee, and H. Gleiter, Nat. Mater. 3, 43 (2004).

    Article  Google Scholar 

  4. V. Turlo and T.J. Rupert, Acta Mater. 151, 100 (2018).

    Article  Google Scholar 

  5. M. Dao, L. Lu, R. Asaro, J.T.M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  6. Z. Liu, D. Zhao, P. Wang, M. Yan, C. Yang, Z. Chen, J. Lu, and Z. Lu, J. Mater. Sci. Technol. 100, 224 (2022).

    Article  Google Scholar 

  7. J. Liu and A.C. To, Addit. Manuf. 16, 58 (2017).

    Google Scholar 

  8. Dd.C. Branco, L.S. de Vasconcelos, L. An, K. Zhao, and G.J. Cheng, J. Mech. Phys. Solids 151, 104391 (2021).

    Article  Google Scholar 

  9. D. Ben, Y. Ma, H. Yang, L. Meng, X. Shao, H. Liu, S. Wang, Q. Duan, and Z. Zhang, Mater. Sci. Eng. A 798, 140109 (2020).

    Article  Google Scholar 

  10. G. Singh, A.M. Waas, and V. Sundararaghavan, Comput. Mater. Sci. 200, 110807 (2021).

    Article  Google Scholar 

  11. Q. Zeng, L. Wang, and W. Jiang, Crystals 11, 1388 (2021).

    Article  Google Scholar 

  12. E. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    Article  Google Scholar 

  13. N. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  14. H. Conrad and J. Narayan, Scripta Mater. 42, 1025 (2000).

    Article  Google Scholar 

  15. Y. Tang, E.M. Bringa, and M.A. Meyers, Mater. Sci. Eng. A 580, 414 (2013).

    Article  Google Scholar 

  16. L. Zhang, C. Lu, and K. Tieu, Comput. Mater. Sci. 118, 180 (2016).

    Article  Google Scholar 

  17. A. Acharya and A. Roy, J. Mech. Phys. Solids 54, 1687 (2006).

    Article  MathSciNet  Google Scholar 

  18. X. Li, Y. Wei, W. Yang, and H. Gao, Proc. Natl. Acad. Sci. 106, 16108 (2009).

    Article  Google Scholar 

  19. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Nat. Mater. 1, 45 (2002).

    Article  Google Scholar 

  20. M.-J. Caturla, T. Nieh, and J. Stolken, Appl. Phys. Lett. 84, 598 (2004).

    Article  Google Scholar 

  21. M.-J. Caturla and T. Nieh, In Nanomechanics of Materials and Structures, (Springer: 2006), pp 289–297.

  22. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  23. P. Hirel, Comput. Phys. Commun. 197, 212 (2015).

    Article  Google Scholar 

  24. Y. Mishin, D. Farkas, M. Mehl, and D. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Article  Google Scholar 

  25. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

  26. A. Stukowski and K. Albe, Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).

    Article  Google Scholar 

  27. L. Zhang, Y. Shibuta, X. Huang, C. Lu, and M. Liu, Comput. Mater. Sci. 156, 421 (2019).

    Article  Google Scholar 

  28. V. Yamakov, D. Wolf, S. Phillpot, A. Mukherjee, and H. Gleiter, Philos. Mag. Lett. 83, 385 (2003).

    Article  Google Scholar 

  29. A. Rida, E. Rouhaud, A. Makke, M. Micoulaut, and B. Mantisi, Phil. Mag. 97, 2387 (2017).

    Article  Google Scholar 

  30. H. Dong, T. Xu, T. Ning, M. Liu, D. Wu, H. Ma, Z. Feng, B. Narayanaswamy, R. Su, and T. Wang, J. Mater. Res. Technol. 23, 77 (2023).

    Article  Google Scholar 

  31. D. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K. Hemker, Acta Mater. 54, 2253 (2006).

    Article  Google Scholar 

  32. K.D. Molodov and D.A. Molodov, Acta Mater. 153, 336 (2018).

    Article  Google Scholar 

  33. T. Rupert, D. Gianola, Y. Gan, and K. Hemker, Science 326, 1686 (2009).

    Article  Google Scholar 

  34. Y.-B. Guo, T. Xu and M. Li, Appl. Phys. Lett., 102 (2013).

  35. Y.-B. Guo, T. Xu, and M. Li, Phil. Mag. 92, 3064 (2012).

    Article  Google Scholar 

  36. E. Castillo, Extreme value theory in engineering, (Elsevier, 2012).

  37. M. Rahman, H. Zurob, and J. Hoyt, Acta Mater. 74, 39 (2014).

    Article  Google Scholar 

  38. P. Cao, Nano Lett. 20, 1440 (2020).

    Article  Google Scholar 

  39. P. Cao, Sci. Adv. 8, eabq7433 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF CAREER Award (CMMI- 2015598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caizhi Zhou.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zhou, C. Plastic Deformation in Aluminum Columnar Nanograins. JOM (2023). https://doi.org/10.1007/s11837-023-06247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-023-06247-x

Navigation