Skip to main content
Log in

Mechanical Activation of Coal Fly Ash for the Improvement of Alumina–Silica Separation During Reduction Roasting–Alkaline Leaching Process

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Efficient removal of silica is the key to alumina extraction from coal fly ash (CFA) by the Bayer process, due to the easy formation of sodium aluminosilicate hydrates during alkaline digestion. Considering the main mineral of well-crystallized mullite in CFA, mechanical activation was used in this work to improve the silica removal during reduction roasting–alkaline leaching. The phase transformations occurring in CFA during mechanical activation, reduction roasting, and alkaline leaching were systemically investigated through MAS-NMR, XRD, and SEM-EDS analyses. The results showed that the mean particle size (d(50)) decreased from 17.98 μm in CFA to 2.03 μm in activated CFA for 10 min with prolonging mechanical activation time, with the corresponding Al(IV) content decreasing from 73.82% to 67.85%. After pre-treatment with mechanical activation, the conversion of CFA into hercynite and silica solid solutions (i.e., quartz solid solution and cristobalite solid solution) was improved during reduction roasting with hematite, and the silica leaching ratio increased from ~ 70% to ~ 90% during the alkaline leaching. The obtained leaching residue with an alumina to silica mass ratio of > 10 was a decent raw material for the Bayer process to extract alumina. This study lays the foundation for comprehensive utilization of CFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Tripathy, B. Behera, V. Aishvarya, A.R. Sheik, B. Dash, C.K. Sarangi, B.C. Tripathy, K. Sanjay, and I.N. Bhattacharya, Miner. Eng. 131, 140 https://doi.org/10.1016/j.mineng.2018.10.019 (2019).

    Article  CAS  Google Scholar 

  2. Z. Yao, X. Ji, P.K. Sarker, J. Tang, L. Ge, M. Xia, and Y. Xi, Earth-Sci. Rev. 141, 105 https://doi.org/10.1016/j.earscirev.2014.11.016 (2015).

    Article  ADS  Google Scholar 

  3. L.M. Delitsyn, A.S. Vlasov, T.I. Borodina, N.N. Ezhova, and S.V. Sudareva, Therm. Eng. 60, 231 https://doi.org/10.1134/S0040601513040034 (2013).

    Article  Google Scholar 

  4. Q. Tian, B. Guo, S. Nakama, L. Zhang, Z. Hu, and K. Sasaki, Waste Manage. 86, 23 https://doi.org/10.1016/j.wasman.2019.01.027 (2019).

    Article  CAS  Google Scholar 

  5. D. Valeev, P. Bobylev, N. Osokin, I. Zolotova, I. Rodionov, C. Salazar-Concha, and K. Verichev, J. Cleaner Prod. 363, 132360 https://doi.org/10.1016/j.jclepro.2022.132360 (2022).

    Article  CAS  Google Scholar 

  6. J. Ding, S.H. Ma, S. Shen, Z. Xie, S. Zheng, and Y. Zhang, Waste Manage. 60, 375 https://doi.org/10.1016/j.wasman.2016.06.009 (2017).

    Article  CAS  Google Scholar 

  7. P. Shao, H. Hou, W. Wang, and W. Wang, Ore Geol. Rev. 158, 105476 https://doi.org/10.1016/j.oregeorev.2023.105476 (2023).

    Article  Google Scholar 

  8. Z. Yao, M. Xia, P.K. Sarker, and T. Chen, Fuel 120, 74 https://doi.org/10.1016/j.fuel.2013.12.003 (2014).

    Article  CAS  Google Scholar 

  9. J. Xiao, F. Li, Q. Zhong, H. Bao, B. Wang, J. Huang, and Y. Zhang, Hydrometallurgy 155, 118 https://doi.org/10.1016/j.hydromet.2015.04.018 (2015).

    Article  CAS  Google Scholar 

  10. A.B. ElDeeb, V.N. Brichkin, R.V. Kurtenkov, and I.S. Bormotov, Appl. Clay Sci. 172, 146 https://doi.org/10.1016/j.clay.2019.03.008 (2019).

    Article  CAS  Google Scholar 

  11. W. Yu, Z. Rao, H. Yuan, P. Wei, J.E. Nyarko-Appiah, and W. Jiang, J. Cleaner Prod. 408, 137129 https://doi.org/10.1016/j.jclepro.2023.137129 (2023).

    Article  CAS  Google Scholar 

  12. V.L. Rayzman, A.V. Aturin, I.Z. Pevzner, V.M. Sizyakov, L.P. Ni, and I.K. Filipovich, JOM 55, 47 https://doi.org/10.1007/s11837-003-0105-z (2003).

    Article  CAS  Google Scholar 

  13. G. Qiu, T. Jiang, G. Li, X. Fan, and Z. Huang, Scand. J. Metall. 33, 121 https://doi.org/10.1111/j.1600-0692.2004.00677.x (2004).

    Article  CAS  Google Scholar 

  14. C. Yang, J. Zhang, S. Li, H. Li, X. Hou, and G. Zhu, Waste Manage. 116, 190 https://doi.org/10.1016/j.wasman.2020.08.003 (2020).

    Article  CAS  Google Scholar 

  15. M. Xie, F. Liu, H. Zhao, C. Ke, and Z. Xu, J. Mater. Res. Technol. 14, 2281 https://doi.org/10.1016/j.jmrt.2021.07.129 (2021).

    Article  CAS  Google Scholar 

  16. A. Senyuta, A. Panov, A. Suss, and Y. Layner, Light Met. https://doi.org/10.1007/978-3-319-65136-1_36 (2013).

    Article  Google Scholar 

  17. P. Smith, Hydrometallurgy 98, 162 https://doi.org/10.1016/j.hydromet.2009.04.015 (2009).

    Article  CAS  Google Scholar 

  18. X. Li, H. Wang, Q. Zhou, T. Qi, G. Liu, Z. Peng, and Y. Wang, Trans. Nonferrous Met. Soc. China 29(2), 416 https://doi.org/10.1016/S1003-6326(19)64951-4 (2019).

    Article  CAS  Google Scholar 

  19. H. Wang, X. Zhang, C. Liu, and L. Shen, J. Sustain. Metall. 7, 1686 https://doi.org/10.1007/s40831-021-00433-4 (2021).

    Article  Google Scholar 

  20. P. Balaz, Int. J. Miner. Process. 72(1–4), 341 https://doi.org/10.1016/S0301-7516(03)00109-1 (2003).

    Article  CAS  Google Scholar 

  21. M.K. Beyer, and H. Clausen-Schaumann, Chem. Rev. 105(8), 2921 https://doi.org/10.1021/cr030697h (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Guo, K. Yan, L. Cui, and F. Cheng, Powder Technol. 302, 33 https://doi.org/10.1016/j.powtec.2016.08.034 (2016).

    Article  CAS  Google Scholar 

  23. X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.L. Wang, Trans. Nonferrous Met. Soc. China 29(1), 186 https://doi.org/10.1016/S1003-6326(18)64927-1 (2019).

    Article  CAS  Google Scholar 

  24. B. Sulikowski, Microporous Mesoporous Mater. 206, 144 https://doi.org/10.1016/j.micromeso.2014.12.024 (2015).

    Article  CAS  Google Scholar 

  25. Z. Zujovic, W.V.K. Wheelwright, P.A. Kilmartin, J.V. Hanna, and R.P. Cooney, Ceram. Int. 44, 2952 https://doi.org/10.1016/j.ceramint.2017.11.047 (2018).

    Article  CAS  Google Scholar 

  26. Z. Ma, S. Zhang, H. Zhang, and F. Cheng, J. Cleaner Prod. 230, 302 https://doi.org/10.1016/j.jclepro.2019.05.113 (2019).

    Article  CAS  Google Scholar 

  27. C. Guo, L. Zhao, J. Yang, K. Wang, and J. Zou, J. Cleaner Prod. 271, 122703 https://doi.org/10.1016/j.jclepro.2020.122703 (2020).

    Article  CAS  Google Scholar 

  28. E.R. Segnit, and T. Gelb, Am. Mineral. 57, 1505 (1972).

    CAS  Google Scholar 

  29. D. Croker, M. Loan, and B.K. Hodnett, Cryst. Growth Des. 8, 4499 https://doi.org/10.1021/cg8004739 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52004194), the University Synergy Innovation Program of Anhui Province (GXXT-2022-083) and the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (2022yjrc25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiting Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 383 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, J., Li, J. et al. Mechanical Activation of Coal Fly Ash for the Improvement of Alumina–Silica Separation During Reduction Roasting–Alkaline Leaching Process. JOM 76, 1456–1466 (2024). https://doi.org/10.1007/s11837-023-06229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06229-z

Navigation