Skip to main content
Log in

Effect of Heat Treatment Process on the Surface Integrity of 7A04 Aluminum Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study aims to investigate the impact of heat treatment processes on the machinability of 7A04 aluminum alloy. The heat-treated samples underwent high-speed cutting tests to analyze the influence of cutting speed on three-dimensional cutting forces, surface roughness, work hardening, and residual stress of the alloy. The findings indicate that cutting forces, surface roughness, and work hardening exhibit similar trends with increasing cutting speed. As the cutting speed rises, the cutting forces, surface roughness, work hardening, and depth of the work-hardened layer also increase. When considering the same cutting speed, an increase in solution temperature initially leads to an increase in cutting forces followed by a reduction. Additionally, the machined surface roughness gradually decreases, while work hardening first increases and then decreases. Residual stress on the machined surface varies with different heat treatment processes and resembles a ladle shape. Higher cutting speeds result in greater surface residual compressive stress and depth of the residual compressive stress layer. When comparing the same cutting speed, the combination of solution treatment at 490°C for 20 min and solution treatment at 480°C for 20 min yields higher surface residual compressive stress and greater depth of the residual compressive stress layer than the combination of solution treatment at 480°C for 20 min. Thus, 7A04 aluminum alloy demonstrates satisfactory machinability at a cutting speed of 1550 m/mm when subjected to solution treatment at 490°C for 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.Q. Wang, Z.X. Wang, X.G. Hu, J.K. Han, and H.J. Xing, Thin-Walled Struct. 108, 305 (2016).

    Article  Google Scholar 

  2. C. Fan, L. Ou, Z. Hu, J. Yang, G. Chen, and H. Yan, Trans. Nonferrous Met. Soc. China 29(10), 2027 (2019).

    Article  Google Scholar 

  3. W. Huang, J. Zhao, J. Niu, G. Wang, and R. Cheng, Procedia CIRP 71, 267 (2018).

    Article  Google Scholar 

  4. I. Perez, A. Madariaga, M. Cuesta, A. Garay, P.J. Arrazola, J.J. Ruiz, F.J. Rubio, and R. Sanchez, Procedia CIRP 71, 460 (2018).

    Article  Google Scholar 

  5. M. Boozarpoor, R. Teimouri, and K. Yazdani, Int. J. Lightweight Mater. Manuf. 4, 145 (2020).

    Google Scholar 

  6. S.R. Ranbir, S. Talvinder, S. Maninderjeet, R. Mohit, K.S. Vijay, and S. Sonu, Proceedings 43(P5), 3144 (2021).

    Google Scholar 

  7. Z.M. Zakaria, and B. Mohieddine, Meas. Sens. 2021(13), 100035 (2021).

    Google Scholar 

  8. D. Ilesanmi, T. Isaac, M. Khumbulani, and A. Adefemi, Procedia CIRP 99, 157 (2021).

    Article  Google Scholar 

  9. P. Zhang, X. Yue, P. Wang, and Yu. Xiao, Vacuum 184, 109886 (2021).

    Article  Google Scholar 

  10. A. Oliveira, L. Silva, V. Baldin, et al., Wear 1, 203752 (2021).

    Article  Google Scholar 

  11. A. Baghbani Barenji, A.R. Eivani, M. Hasheminiasari, H.R. Jafarian, and N. Park, J. Mater. Res. Technol. 9(2), 1683 (2020).

    Article  Google Scholar 

  12. A. Baghbani Barenji, A.R. Eivani, H.R. Jafarian, and N. Park, J. Mater. Res. Technol. 9(3), 5599 (2020).

    Article  Google Scholar 

  13. Y. Liu, B. Zhu, Y. Wang, S. Li, and Y. Zhang, Int. J. Lightweight Mater. Manuf. 3(1), 20 (2020).

    Google Scholar 

  14. Z. Zhang, Yu. Jianhao, and D. He, J. Alloys Compd. 823, 153919 (2020).

    Article  Google Scholar 

  15. C. Binqiang, Li. Yang, C. Xincheng, S. Weifang, and Z. Shiqiang, Measurement 175, 109143 (2021).

    Article  Google Scholar 

  16. S. Kolahdouz, M. Hadi, B. Arezoo, and S. Zamani, Procedia CIRP 26, 367 (2015).

    Article  Google Scholar 

  17. R. Adam, Z. Iwona, S. Jack, W. Jonathan, C. Julia, S. Tom, and M. Agostino, J. Clean. Prod. 288, 125580 (2021).

    Article  Google Scholar 

  18. P. Zhang, X. Yue, P. Wang, and X. Yu, Vacuum 184, 109886 (2020).

    Google Scholar 

  19. P. Zhang, A. Song, Y. Fang, X. Yue, Y. Wang, and X. Yu, Vacuum 173(5), 109119 (2020).

    Article  Google Scholar 

  20. N.S. Balaji, S. Jayabal, and S.K. Sundaram, Trans. Indian Inst. Met. 69, 881 (2016).

    Article  Google Scholar 

  21. H. Coules, T. Pirling, S. Ganguly, and J. Sule, J. Manuf. Process. 127, 115 (2015).

    Google Scholar 

  22. P. Zhang, Z.H. Liu, J.L. Liu, J. Yu, Q.Q. Mai, and X.J. Yue, Vacuum 208, 111692 https://doi.org/10.1016/j.vacuum.2022.111692 (2022).

    Article  Google Scholar 

  23. P. Zhang, Z.H. Liu, X.J. Yue, P.H. Wang, and Y.C. Zhai, Vacuum 206, 111532 https://doi.org/10.1016/j.vacuum.2022.111532 (2022).

    Article  Google Scholar 

  24. Z. Niu, F. Jiao, and K. Cheng, J. Manuf. Process. 31(1), 382 (2018).

    Article  Google Scholar 

  25. K. Cheng and D. Huo, Chichester (2013).

  26. P. Zhang, J.L. Liu, Y.R. Gao, Z.H. Liu, and Q.Q. Mai, Vacuum 207, 111574 https://doi.org/10.1016/j.vacuum.2022.111574 (2023).

    Article  Google Scholar 

  27. P. Zhang, S. Wang, Z. Lin, X. Yue, Y. Gao, S. Zhang, and H. Yang, Vacuum. https://doi.org/10.1016/j.vacuum.2023.111939 (2023).

    Article  Google Scholar 

  28. F. Gunnberg, M. Escursell, and M. Jacobson, J. Mater. Process. Technol. 174(1–3), 82 (2006).

    Article  Google Scholar 

  29. P. Zhang, Z. Lin, Z. Liu, J. Liu, Q. Mai, and X. Yue, Int. J. Damage Mech. https://doi.org/10.1177/10567895231171408 (2023).

    Article  Google Scholar 

  30. Q. Zhang, S. Zhang, and J. Li, Procedia Manuf. 10(5), 37 (2017).

    Article  Google Scholar 

  31. P. Zhang, Z. Lin, S. Wang, et al., Int. J. Adv. Manuf. Technol. 127, 4803 (2023).

    Article  Google Scholar 

  32. P. Zhang, Y. Gao, S. Wang, et al., Int. J. Adv. Manuf. Technol. 127, 4453 (2023).

    Article  Google Scholar 

  33. A.A. Khoreshok, L.E. Mametyev, A. Yu Borisov, et al., IOP Conf. Ser. Mater. Sci. Eng. 127(1), 012039 (2016).

    Article  Google Scholar 

  34. E. Uhlmann, S. Henze, K. Brömmelhoff, et al., Procedia CIRP 58(5), 91 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

All authors declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The work was supported by the National Natural Science Foundation of China (51705270), the National Natural Science Foundation of China (No. 51575289), the Natural Science Foundation of Shandong Province (No. ZR2016EEP03), the Applied Basic Research Program of Qingdao city (No. 19-6-2-69-cg) and Shandong Qingchuang Science and Technology Project (No. 2019KJB022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Gao, Y., Yue, X. et al. Effect of Heat Treatment Process on the Surface Integrity of 7A04 Aluminum Alloy. JOM 75, 5953–5961 (2023). https://doi.org/10.1007/s11837-023-06142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06142-5

Navigation