Skip to main content
Log in

Effect of FeCoNiMnCr High-Entropy Alloy Reinforcement on Mechanical, Wear, and Thermal Expansion Behavior of Copper Matrix Composites

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) are being considered as potential reinforcements in metal matrices to overcome limitations exhibited by ceramic reinforcements. In the present work, FeCoNiMnCr HEA-reinforced copper matrix composites were fabricated through powder metallurgy and investigated for their mechanical, wear, and thermal expansion behaviors. Elemental powders of Fe, Cr, Ni, Mn, and Co were mechanically alloyed in a high-energy ball mill for 15 h to obtain single-phase FCC-structured FeCoNiMnCr HEA powders. These milled HEA and Cu powders were proportionately blended for required compositions (0 wt.%, 2.5 wt.%, 5 wt.%, and 10 wt.% HEA), subsequently compacted at 700 MPa and sintered at 900 °C in an Ar atmosphere to produce Cu-HEA composites. The microstructure of the FeCoNiMnCr HEA and the Cu-HEA composites were studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The micro-hardness and compressive strength of Cu-10% HEA were 40% and 60% more than pure Cu, respectively. Cu-HEA composites showed reduced specific wear rates and COF values as compared to the pure Cu matrix. The co-efficient of thermal expansion (CTE) curves of the Cu-HEA composites were similar to that of pure Cu due to low thermal mismatch between the HEA reinforcement and the Cu matrix, resulting in a reduction of thermal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Kashani, C. Kim, C. Rudolf, F.K. Perkins, E.R. Cleveland, and W. Kang, Adv. Mater. 33, 2104208 (2021).

    Article  Google Scholar 

  2. S. Endo, M. Sato, Y. Bu and T. Mizuno, Improving the transmission efficiency of copper plate coils for wireless power transmission using magnetic flux path control technology. Paper presented at 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, p. 14-17 (2019)

  3. S. Mallik, N. Ekere, C. Best, and R. Bhatti, Appl. Therm. Eng. 31(2–3), 355 (2011).

    Article  Google Scholar 

  4. D.D.L. Chung, Appl. Therm. Eng. 21(16), 1593 (2001).

    Article  Google Scholar 

  5. W. Österle, C. Prietzel, H. Kloß, and A.I. Dimitriev, Tribol. Int. 43(12), 2317 (2010).

    Article  Google Scholar 

  6. Y. Xiao, Z. Zhang, P. Yao, K. Fan, H. Zhou, T. Gong, L. Zhao, and M. Deng, Tribol. Int. 119, 585 (2018).

    Article  Google Scholar 

  7. W.A. Glaeser, Tribology Series. Vol 20; Materials for Tribology. (Elsevier, Amsterdam, Netherlands, 1992)

  8. E. Xu, J. Huang, Y. Li, Z. Zhu, M. Cheng, D. LiH, J.L. Zhong, and Y. Jiang, Powder Technol. 344, 551 (2019).

    Article  Google Scholar 

  9. C.S. Ramesh, R.N. Ahmed, M.A. Mujeebu, and A.Z. Abdullah, Mater. Des. 30(6), 1957 (2009).

    Article  Google Scholar 

  10. R. Venkatesh, and V.S. Rao, Def. Technol. 14(4), 346 (2018).

    Article  Google Scholar 

  11. G.A. Bagheri, J. Alloys Compd. 676, 120 (2016).

    Article  Google Scholar 

  12. Y. Liu, J. Chen, Z. Li, X. Wang, P. Zhang, and J. Liu, Vacuum 184, 109882 (2021).

    Article  Google Scholar 

  13. S. Jin, and H. Mavoori, JOM 50, 70 (1998).

    Article  Google Scholar 

  14. F. Delannay, Comprehensive Composites Materials, ed. A. Kelly and C. Zweben (Elsevier, Amsterdam, Netherlands, 2000), p. 341

  15. H. Ren, G. Zou, Q. Jia, Z. Deng, C. Du, W. Wang, and L. Liu, Microelectron. Reliab. 127, 114379 (2021).

    Article  Google Scholar 

  16. J. Chen, P. Niu, T. Wei, L. Hao, Y. Liu, X. Wang, and Y. Peng, J. Alloys Compd. 649, 630 (2015).

    Article  Google Scholar 

  17. W. Chen, Z. Li, T. Lu, T. He, R. Li, B. Li, B. Wan, Z. Fu, and S. Scudino, Mater. Sci. Eng. A 762, 138116 (2019).

    Article  Google Scholar 

  18. Y. Shandagi, K. Chattopadhyay, and N.K. Mukhopadhyay, J. Mater. Res. 38, 248 (2023).

    Article  Google Scholar 

  19. Y. Zhang, K. Luo, G. Lei, and H. Yu, Metall. Mater. Trans. A 53(12), 4161 (2022).

    Article  Google Scholar 

  20. Y. Chen, L. Wang, and Z. Ji, J. Mater. Eng. Perform. 32, 7275 (2023).

    Article  Google Scholar 

  21. B.S. Murty, J.W. Yeh, S. Ranganathan, and P.P. Bhattacharjee, High-Entropy Alloys (Elsevier, Amsterdam, Netherlands, 2019).

    Book  Google Scholar 

  22. G.K. Bansal, A.K. Chandan, G.K. Mandal and V.K Srivastava, High Entropy Alloys: Innovations, Advances and Applications, ed. T.S. Srivatsan and M. Gupta (CRC Press, Boca Raton, 2021)

  23. Y. Zhang, G. Lei, K. Luo, P. Chen, C. Kong, and H. Yu, Tribol. Int. 175, 107868 (2022).

    Article  Google Scholar 

  24. K.P. Kumar, M.G. Krishna, J.B. Rao, and N.R. Bhargava, J. Alloys Compd. 640, 421 (2015).

    Article  Google Scholar 

  25. J. Chen, T. Xiang, W. Bao, B. Yu, J. Li, Y. Wang, T. Zhou, P. Du, and G. Xie, Mater. Sci. Eng. A 878, 145210 (2023).

    Article  Google Scholar 

  26. R. Zhu, Y. Li, Y. Sun, J. Feng, and W. Gong, J. Alloys Compd. 940, 168906 (2023).

    Article  Google Scholar 

  27. J.M. Torralba, P. Alvaredo, and A. García-Junceda, Powder Metall. 62(2), 84 (2019).

    Article  Google Scholar 

  28. M. Vaidya, G.M. Muralikrishna, and B.S. Murty, J. Mater. Res. 34(5), 664 (2019).

    Article  Google Scholar 

  29. C. Suryanarayana and E. Ivanov, Mechanical Alloying for Advanced Materials ed. F.D.S. Marquis, Powder Materials: Current Research and Industrial Practices III (Wiley, Hoboken, 2010), p. 169

  30. L. Moravcikova-Gouvea, I. Moravcik, V. Pouchly, Z. Kovacova, M. Kitzmantel, E. Neubauer, and I. Dlouhy, Materials. 14, 5796 (2021).

    Article  Google Scholar 

  31. S.N. Addepalli, S. Joladarashi, M.R. Ramesh, and S.B. Arya, J. Therm. Spray Technol. 31, 1045 (2022).

    Article  Google Scholar 

  32. M. Vaidya, A. Karati, A. Marshal, K.G. Pradeep, and B.S. Murty, J. Alloys Compd. 770, 1004 (2019).

    Article  Google Scholar 

  33. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas, Mater. Sci. Eng. A. 679, 299–313 (2017).

    Article  Google Scholar 

  34. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K. Mukhoupadhyay, J. Alloys Compd. 757, 20 (2016).

    Google Scholar 

  35. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Mater. Sci. Eng., A 712, 616–624 (2018).

    Article  Google Scholar 

  36. C. Suryanarayana. Research. (2019). https://doi.org/10.34133/2019/4219812

  37. J. Pan, T. Dai, T. Lu, X. Ni, J. Dai and M. Li. Mater. Sci. Eng. A, 783, 362 (2018)

  38. B. Cantor, I.T. Chang, P. Knight, and A.J. Vincent, Mater. Sci. Eng. A. 375, 213–218 (2004).

    Article  Google Scholar 

  39. Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, and W. Ma, J. Mater. Res. Technol. 15, 1920 (2021).

    Article  Google Scholar 

  40. Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie, Nat. Commun. 6, 10143 (2015).

    Article  Google Scholar 

  41. M. Vaidya, K. Guruvidyathri, and B.S. Murty, J. Alloys Compd. 774, 856 (2019).

    Article  Google Scholar 

  42. A. Kumar, A. Singh, and A. Suhane, J. Mater. Res. 37, 2961 (2022).

    Article  Google Scholar 

  43. I. Dinaharan, and T. Albert, Mater. Today Commun. 34, 105250 (2023).

    Article  Google Scholar 

  44. C.C. Leong, L. Lu, J.Y. Fuh, and Y.S. Wong, Mater. Sci. Eng. A. 338(1–2), 81–88 (2002).

    Article  Google Scholar 

  45. D.K. Sharma, D. Mahant, and G. Upadhyay, Mater. Today: Proc. 26, 506 (2020).

    Article  Google Scholar 

  46. S. Ramesh, G. Anne, H.S. Nayaka, S. Sahu, and M.R. Ramesh, J. Magnes. Alloys 7, 444 (2019).

    Article  Google Scholar 

  47. J. Joy, M. Jadhav, D. Sahane, D. Davis, and S. Singh, Mater. Sci. Technol. 35, 1700 (2019).

    Article  Google Scholar 

  48. M.A. Gutierrez, G.D. Rodriguez, G. Bozzolo, and H.O. Mosca, Comput. Mater. Sci. 148, 69 (2018).

    Article  Google Scholar 

  49. N. Eißmann, B. Klöden, T. Weißgärber, and B. Kieback, Powder Metall. 60, 184 (2017).

    Article  Google Scholar 

  50. M.R. Akbarpour, E. Salahi, F.A. Hesari, H.S. Kim, and A. Simchi, Mater. Des. 52, 881–887 (2013).

    Article  Google Scholar 

  51. R.J. Arsenault, and N. Shi, Mater. Sci. Eng. 81, 175 (1986).

    Article  Google Scholar 

  52. A. Sanaty-Zadeh, Mater. Sci. Eng. A 531, 112 (2012).

    Article  Google Scholar 

  53. S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty, and J. Eckert, Acta. Mater. 57(6), 2029 (2009).

    Article  Google Scholar 

  54. K. Luo, S. Liu, H. Xiong, Y. Zhang, C. Kong, and H. Yu, Met. Mater. Int. 28(11), 2811 (2022).

    Article  Google Scholar 

  55. D.C. Van Aken, P.E. Krajewski, G.M. Vyletel, J.E. Allison, and J.W. Jones, Metall. Mater. Trans. A 26, 1395 (1995).

    Article  Google Scholar 

  56. F.A. Mirza, and D.L. Chen, Materials 8(8), 5138 (2015).

    Article  Google Scholar 

  57. F. Louchet, J. Weiss, and T. Richeton, Phys. Rev. Lett. 97(7), 075504 (2006).

    Article  Google Scholar 

  58. W.S. Miller, and F.J. Humphreys, Scr. Mater. et Mater. 25(1), 33 (1991).

    Article  Google Scholar 

  59. N.J.A.M. Ramakrishnan, Acta. Mater. 44(1), 69 (1996).

    Article  Google Scholar 

  60. D.Y Li, Smithell’s Metal Reference Book, ed. W.F. Gale and T.C. Totemeir (Elsevier, Oxford, 2004), p. 25-12

  61. Y. Xiao, Y. Cheng, M. Shen, P. Yao, J. Du, D. Ji, H. Zhao, S. Liu, and L. Hua, J. Mater. Res. Technol. 19, 2050 (2022).

    Article  Google Scholar 

  62. S.R. Dong, J.P. Tu, and X.B. Zhang, Mater. Sci. Eng. A 313(1–2), 83 (2001).

    Article  Google Scholar 

  63. T. Scubert, B. Trindade, T. Weißgärber, and B. Kieback, Mater. Sci. Eng. A 475, 39 (2008).

    Article  Google Scholar 

  64. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, J. Alloys Compd. 623, 348 (2015).

    Article  Google Scholar 

  65. K. Dash, S. Sukumaran, and B.C. Ray, Sci. Eng. Compos. Mater. 23, 1 (2016).

    Article  Google Scholar 

  66. G.A. Slack, and S.F. Bartram, J. Appl. Phys. 46(1), 89 (1975).

    Article  Google Scholar 

  67. G. Grabowski, R. Lach, Z. Pędzich, K. Świerczek, and A. Wojteczko, Arch. Civ. Mech. Eng. 18, 188 (2018).

    Article  Google Scholar 

  68. S. Linas, Y. Magnin, B. Poinsot, O. Boisron, G.D. Förster, V. Martinez, R. Fulcrand, F. Tournus, V. Dupuis, F. Rabilloud, L. Bardotti, Z. Han, D. Kalita, V. Bouchiat, and F. Calvo, Phys. Rev. B 91, 075426 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author is thankful for financial and research assistance provided by KSTePS, DST, Government of Karnataka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen J. Mane.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, P.J., Shantharaja, M., Manne, B. et al. Effect of FeCoNiMnCr High-Entropy Alloy Reinforcement on Mechanical, Wear, and Thermal Expansion Behavior of Copper Matrix Composites. JOM 75, 4421–4434 (2023). https://doi.org/10.1007/s11837-023-06066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06066-0

Navigation