Skip to main content
Log in

A Study of the Creep Properties and Constitutive Model of Sintered Nano-silver: Role of Loading Condition and Temperature

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Sintered nano-silver is a potential packaging material for third-generation semiconductors. In the current work, the creep evolution of sintered nano-silver under different loading conditions was studied theoretically. A damage creep model was established for the prediction of creep evolution and damage accumulation, and the accuracy of the model was verified by comparing it with the experimental data of compression and tensile and shear creep. In addition, a porosity model has been proposed based on the damage evolution of sintered nano-silver for tensile creep. For compression creep, the experiments and theoretical studies were performed to supplement the lack of compression creep of sintered nano-silver, and the porous microstructure and failure mechanism were elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, and G.Q. Lu, Mater. Sci. Eng. A Struct. 579, 108–113 https://doi.org/10.1016/j.msea.2013.05.001 (2013).

    Article  Google Scholar 

  2. H. Gong, Y. Yao, and Y.T. Yang, J. Alloys Compd. 863, 158611 https://doi.org/10.1016/j.jallcom.2021.158611 (2021).

    Article  Google Scholar 

  3. K.S. Siow, J. Alloys Compd. 514, 6–19 https://doi.org/10.1016/j.jallcom.2011.10.092 (2012).

    Article  Google Scholar 

  4. H. Gong, H.C. Wu, and Y. Yao, J. Mater. Sci. 56, 18281–18299 https://doi.org/10.1007/s10853-021-06426-8 (2021).

    Article  Google Scholar 

  5. L. Signor, P. Kumar, B. Tressou, C. Nadot Martin, J. Miranda Ordonez, J. Carr, K. Joulain and X. Milhet, J. Electron. Mater. 47, 4170-4176. https://doi.org/10.1007/s11664-018-6253-2 (2018).

  6. Y.J. Kim, B.H. Park, S.K. Hyun and H. Nishikawa, Mater. Today Commun. 29, 102772. https://doi.org/10.1016/j.mtcomm.2021.102772 (2021).

  7. Y.S. Tan, X. Li, X. Chen, Z.W. Yang, and G.Q. Lu, Solder Surf. Mt. Tech. 32, 129–136 https://doi.org/10.1108/SSMT-07-2019-0023 (2020).

    Article  Google Scholar 

  8. C.T. Chen, Z. Zhang, D.J. Kim, B.W. Zhang, M. Tanioku, T. Ono, K. Matsumoto, and K. Suganuma, Appl. Surf. Sci. 497, 143797 https://doi.org/10.1016/j.apsusc.2019.143797 (2019).

    Article  Google Scholar 

  9. X. Long, Z. Li, X.Z. Lu, H.C. Guo, C. Chang, Q.R. Zhang, A. Zehri, W. Ke, Y. Yao, and L.L. Ye, Mater. Sci. Eng. A Struct. 744, 406–414 https://doi.org/10.1016/j.msea.2018.12.015 (2019).

    Article  Google Scholar 

  10. H. Gong, T.Y. Wang, J.Q. Zhu, S.J. Li, and Y. Yao, J. Appl. Mech.-T. ASME 90(3), 031004 https://doi.org/10.1115/1.4056253 (2022).

    Article  Google Scholar 

  11. X. He, L. Liu, B. Li, H. Shu, and Y. Yao, Int. J. Solids Struct. 11, 2022 https://doi.org/10.1016/j.ijsolstr.2022.112023 (2023).

    Article  Google Scholar 

  12. P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, and X. Milhet, Mater. Sci. Eng. A Struct. 669, 379–386 https://doi.org/10.1016/j.msea.2016.05.108 (2016).

    Article  Google Scholar 

  13. K. Wakamoto, Y. Mochizuki, T. Otsuka, K. Nakahara, and T. Namazu, Materials 13, 4061 https://doi.org/10.3390/ma13184061 (2020).

    Article  Google Scholar 

  14. W. Cai, P. Wang, and J. Fan, Mech. Mater. 145, 103391 https://doi.org/10.1016/j.mechmat.2020.103391 (2020).

    Article  Google Scholar 

  15. T. Wang, G. Chen, Y.P. Wang, X. Chen, and G.Q. Lu, Mater. Sci. Eng. A Struct. 527, 6714–6722 https://doi.org/10.1016/j.msea.2010.07.012 (2010).

    Article  Google Scholar 

  16. M.Y. Li, Y. Xiao, Z.H. Zhang, J. Yu, and A.C.S. Appl, Mater. Interfaces 7, 9157–9168 https://doi.org/10.1021/acsami.5b01341 (2015).

    Article  Google Scholar 

  17. M.Y. Wang, Y.H. Mei, W.B. Hu, X. Li, and G.Q. Lu, IEEE. J. Emerg. Sel. Top. Power 10, 2645–2655 https://doi.org/10.1109/JESTPE.2022.3150223 (2022).

    Article  Google Scholar 

  18. D.J. Yu, X. Chen, G. Chen, G.Q. Lu, and Z.Q. Wang, Mater. Des. 30, 4574–4579 https://doi.org/10.1016/j.matdes.2009.04.006 (2009).

    Article  Google Scholar 

  19. G. Chen, Z.S. Zhang, Y.H. Mei, X. Li, D.J. Yu, L. Wang, and X. Chen, Mech. Mater. 72, 61–71 https://doi.org/10.1016/j.mechmat.2014.02.001 (2014).

    Article  Google Scholar 

  20. Y.S. Tan, X. Li, X. Chen, and G.Q. Lu, J. Mater. Sci. Mater. Electron. 29, 303–312 https://doi.org/10.1007/s10854-017-7917-z (2018).

    Article  Google Scholar 

  21. G. Chen, X.H. Sun, P. Nie, Y.H. Mei, G.Q. Lu, and X. Chen, J. Electron. Mater. 41, 782–790 https://doi.org/10.1007/s11664-012-1903-2 (2012).

    Article  Google Scholar 

  22. S.A. Paknejad, and S.H. Mannan, Microelectron. Reliab. 70, 1–11 https://doi.org/10.1016/j.microrel.2017.01.010 (2017).

    Article  Google Scholar 

  23. H. Gong, H.C Wu, H.C Guo and Y. Yao, Compressive properties and microstructure evolution of sintered nano-silver. Paper presented at the 5th International Conference on Green Composite Materials and Nanotechnology, Nanjing, China, 23–25, July. https://doi.org/10.1088/1742-6596/2011/1/012061 2021.

  24. Y.J. Xie, Y.J. Wang, Y.H. Mei, H.N. Xie, K. Zhang, S.T. Feng, K.S. Siow, X. Li, and G.Q. Lu, J. Mater. Process. Technol. 255, 644–649 https://doi.org/10.1016/j.jmatprotec.2018.01.017 (2018).

    Article  Google Scholar 

  25. Y. Liu, H. Zhang, L.E. Wang, X.J. Fan, G.Q. Zhang, and F.L. Sun, IEEE. Trans. Device Mater. Reliab. 18, 240–246 https://doi.org/10.1109/TDMR.2018.2819431 (2018).

    Article  Google Scholar 

  26. H. Gong, Y. Yao, and F.F. Zhao, J. Mater. Sci. Mater. Electron. 31, 7649–7662 https://doi.org/10.1016/j.jmatprotec.2018.01.017 (2020).

    Article  Google Scholar 

  27. C. Guo, P. Guo, L. Zhao, P. Lin, and F. Wang, Geotech. Res. 8, 54–63 https://doi.org/10.1680/jgere.20.00043 (2021).

    Article  Google Scholar 

  28. S.J. Almalki, and S. Nadarajah, Reliab. Eng. Syst. Safe 124, 32–55 https://doi.org/10.1016/j.ress.2013.11.010 (2014).

    Article  Google Scholar 

  29. C. Chen, and K. Suganuma, Mater. Des. 162, 311–321 https://doi.org/10.1016/j.matdes.2018.11.062 (2019).

    Article  Google Scholar 

  30. B. Chen, and J. Liu, Cem. Concrete. Res. 34, 391–397 https://doi.org/10.1016/j.cemconres.2003.08.021 (2004).

    Article  Google Scholar 

  31. F.C. Monkman, and N.J. Grant, Proc. ASTM 56, 593–620 (1956).

    Google Scholar 

  32. L.M. Kachanov, Nank SSR Otd Tech Nauk 8, 26–31 (1958).

    Google Scholar 

  33. S.G.R. Brown, R.W. Evans, and B. Wilshire, Int. J. Pres. Ves. Pip. 24, 251–268 https://doi.org/10.1016/0308-0161(86)90125-0 (1986).

    Article  Google Scholar 

  34. Y. Hu, Y. Wang, and Y. Yao, Mater. Today Commun. 34, 105292 https://doi.org/10.1016/j.mtcomm.2022.105292 (2023).

    Article  Google Scholar 

  35. Y. Yao, Q. Huang, and S. Wang, Mater. Today Commun. 24, 101236 https://doi.org/10.1016/j.mtcomm.2020.101236 (2020).

    Article  Google Scholar 

  36. N. Bonora, Eng. Fract. Mech. 58, 11–28 https://doi.org/10.1016/S0013-7944(97)00074-X (1997).

    Article  Google Scholar 

  37. Z. Chen, X. Wang, F. Giuliani, and A. Atkinson, Acta. Mater. 89, 268–277 https://doi.org/10.1016/j.actamat.2015.02.014 (2015).

    Article  Google Scholar 

  38. J. Carr, X. Milhet, P. Gadaud, S. Boyer, G.E. Thompson, and P. Lee, J. Mater. Process. Technol. 225, 19–23 https://doi.org/10.1016/j.jmatprotec.2015.03.037 (2015).

    Article  Google Scholar 

  39. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Appl. Mech. Rev. 23, 119–119 https://doi.org/10.1115/1.1421119 (2002).

    Article  Google Scholar 

  40. N. Ramakrishnan, and V.S. Arunachalam, J. Mater. Sci. 25, 3930–3937 https://doi.org/10.1007/BF00582462 (1990).

    Article  Google Scholar 

  41. J. Lemaitre, A Course on Damage Mechanics (Springer, 2012), pp. 12–14.

  42. A. Rajput, and S.K. Paul, Model. Simul. Mater. Sci. 29, 085013 https://doi.org/10.1088/1361-651X/ac3051 (2021).

    Article  Google Scholar 

  43. B. Zhao, P. Huang, L. Zhang, S. Li, Z. Zhang, and Q. Yu, Sci. Rep. UK 10, 3086 https://doi.org/10.1038/s41598-020-60013-6 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by the Shaanxi science and technology innovation team (No. 2022TD-05), Shaanxi “Sanqin Scholar” innovation team, the major basic research project of the natural science foundation of the Jiangsu higher education institutions of China (No. 22KJB130006) and Natural science foundation of Jiangsu province and Changzhou leading innovative talent introduction and cultivation project (No. CQ20220101).

Author information

Authors and Affiliations

Authors

Contributions

YY, DZ and GH proposed the idea, CX and SY performed compression experiments, GH derived theories, analyzed experimental data and wrote the manuscript. All the authors discussed the results and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Deng Zichen or Yao Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 130 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Xiangchen, C., Yang, S. et al. A Study of the Creep Properties and Constitutive Model of Sintered Nano-silver: Role of Loading Condition and Temperature. JOM 75, 3859–3869 (2023). https://doi.org/10.1007/s11837-023-05981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05981-6

Navigation