Skip to main content
Log in

Extraction of Metals from Nickel Concentrate by Low-Temperature NH4HSO4 Roasting-Water Leaching and Efficient Separation of Iron and Copper

  • Pyrometallurgical Techniques Driving Recycling and the Circular Economy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aiming at the problems of high energy consumption and low metal recovery in traditional smelting of nickel concentrate, a novel process, namely NH4HSO4 roasting followed by water leaching to simultaneously extract metals and then separate them step by step, was proposed. The effect of some key factors on the extraction of metals was investigated by orthogonal experiments, and the optimal sulfated roasting conditions were determined as: concentrate particle size 75–80 µm, roasting time 180 min, roasting temperature 400°C and N/C 8:1. The metal extractions were 94.2% for nickel, 97.0% for copper and 96.4% for cobalt; also 81.9% iron and 67.7% Mg were sulfated. The clinker was selectively roasted at 600°C for 2 h to convert soluble iron salts into water-insoluble iron oxides, followed by conducting oxidation neutralization of the leaching solution; 97.1% of iron could be removed. Solvent extraction of copper from iron-removed solution was carried out with LIX984, and the extraction of Cu could reach 99.0%, while the losses of Ni, Co and Mg were < 2.0%. When the organic phase was back-extracted with 3–5 mol/L sulfuric acid for 2–6 min, the back-extraction of copper could reach 99.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.N. Mu, F.H. Cui, H.X. Xin, Y.C. Zhai, and Q. Xu, Hydrometallurgy 191, 105187 (2020).

    Article  Google Scholar 

  2. Z.Z. Bian, Y.L. Feng, and H.R. Li, Trans. Nonferrous Met. Soc. China 30(10), 2836 (2020).

    Article  Google Scholar 

  3. F.M. Wang, F. Liu, R. Elliott, S. Rezaei, L.T. Khajavi, and M. Barati, J. Alloys Comp. 822, 153582 (2020).

    Article  Google Scholar 

  4. X. Li, S.J. Wang, T.Y. Liu, and F.S. Ma, Eng. Geol. 76(1–2), 93 (2004).

    Article  Google Scholar 

  5. Z.Q. Yang, Engineering 3, 559 (2017).

    Article  Google Scholar 

  6. H. Kumar, K. Luolavirta, S.U. Akram, H. Mehmood, and S. Luukkanen, Minerals 11(3), 328 (2021).

    Article  Google Scholar 

  7. W.N. Mu, Z.P. Huang, H.X. Xin, S.H. Luo, Y.C. Zhai, and Q. Xu, JOM 71(12), 4647 (2019).

    Article  Google Scholar 

  8. M. Laputka, and W. Xie, Mining Metall. Explor. 38(3), 1135 (2021).

    Google Scholar 

  9. Q.C. Sun, H.W. Cheng, X.Y. Mei, Y.B. Liu, G.S. Li, Q. Xu, and X.G. Lu, Sci. Rep-UK 10(1), 9916 (2020).

    Article  Google Scholar 

  10. C. Xu, H.W. Cheng, G.S. Li, C.Y. Lu, X.G. Lu, X.L. Zou, and Q. Xu, Int. J. Min. Met. Mater. 24(4), 377 (2017).

    Article  Google Scholar 

  11. R. Panda, K.K. Pant, T. Bhaskar, and S.N. Naik, J. Clean. Prod. 291, 125928 (2021).

    Article  Google Scholar 

  12. F.H. Cui, W.N. Mu, W. Shuai, H.X. Xin, H.T. Shen, X. Qian, Y.C. Zhai, and S.H. Luo, Sep. Purif. Technol. 195, 149 (2018).

    Article  Google Scholar 

  13. X. Xu, W. Mu, L. Wang, H. Xin, X. Lei, S. Luo, and Y. Zhai, JOM 74(5), 1989 (2022).

    Article  Google Scholar 

  14. F. Cui, W. Mu, Y. Zhai, and X. Guo, Sep. Purif. Technol. 239, 116577 (2020).

    Article  Google Scholar 

  15. P. Zhong, W. Mu, L. Li, M. Gu, H. Xin, X. Lei, and S. Luo, Miner. Eng. 188, 107826 (2022).

    Article  Google Scholar 

  16. M.C. Ruiz, I. González, V. Rodriguez, and R. Padilla, Min. Proc. Ext. Met. Rev. 42, 1 (2021).

    Article  Google Scholar 

  17. R. Moriyasu, and J.W. Moffett, Mar. Chem. 239, 104073 (2022).

    Article  Google Scholar 

  18. Y.X. Qiu, L.M. Yang, S.T. Huang, Z.G. Ji, and Y. Li, Chin. J. Chem. Eng. 25(6), 760 (2017).

    Article  Google Scholar 

  19. A. Soeezi, H. Abdollahi, S.Z. Shafaei, and E. Rahimi, Trans. Nonferrous Met. Soc. China 30(2), 518 (2020).

    Article  Google Scholar 

  20. S.B. Wang, J. Li, H. Narita, and M. Tanaka, Mater. Trans. 58(10), 1427 (2017).

    Article  Google Scholar 

  21. B.S. Han, B. Altansukh, K. Haga, Z. Stevanović, R. Jonović, L. Avramović, and D. Urosević, J. Hazard. Mater. 352, 192 (2018).

    Article  Google Scholar 

  22. L. Pino, E. Beltran, A. Schwarz, M.C. Ruiz, and R. Borquez, Hydrometallurgy 195, 105361 (2020).

    Article  Google Scholar 

  23. K. Shah, K. Gupta, and B. Sengupta, J. Environ. Chem. Eng. 5(5), 5260 (2017).

    Article  Google Scholar 

  24. F. Cui, W. Mu, S. Wang, H. Xin, Q. Xu, Y. Zhai, and S. Luo, Miner. Eng. 123, 104 (2018).

    Article  Google Scholar 

  25. J. Li, Y. Hu, L. Yue, Z. Cao, Q. Li, L. Zeng, W. Guan, M. Wang, G. Zhang, and S. Wu, Sep. Purif. Technol. 302, 122096 (2022).

    Article  Google Scholar 

  26. A.S. Guimarães, and M.B. Mansur, Miner. Eng. 185, 107684 (2022).

    Article  Google Scholar 

  27. W.N. Mu, F.H. Cui, Z.P. Huang, Y.C. Zhai, Q. Xu, and S.H. Luo, J. Clean. Prod. 177, 371 (2018).

    Article  Google Scholar 

  28. F. Meng, X. Li, L. Shi, Y. Li, F. Gao, and Y. Wei, Miner. Eng. 157, 106561 (2020).

    Article  Google Scholar 

  29. J. Li, Z. Chen, B. Shen, Z. Xu, and Y. Zhang, J. Clean. Prod. 140, 1148 (2017).

    Article  Google Scholar 

  30. R.V. Siriwardane, J.A.P. Jr, E.P. Fisher, M.S. Shen, and A.L. Miltz, Appl. Surf. Sci. 152, 219 (1999).

  31. T. Xiao, W. Mu, S. Shi, H. Xin, X. Xu, H. Cheng, S. Luo, and Y. Zhai, Miner. Eng. 174, 107254 (2021).

    Article  Google Scholar 

  32. J. Kang, Y. Wang, C. Yu, X. Wang, and Z. Liu, J. Phys. Chem. Sol. 168, 110814 (2022).

    Article  Google Scholar 

  33. H. Vu, Hydrometallurgy 77(1), 147 (2005).

    Article  Google Scholar 

  34. W. Zhang, B. Ma, J. Yu, C. Wang, and Y. Chen, Sep. Purif. Technol. 301, 121987 (2022).

    Article  Google Scholar 

  35. H.H. He, and Q.F. Cai, Nickel and Cobalt Metallurgy of China (Metallurgical Industry Press, Beijing, 2000), p306.

    Google Scholar 

  36. G.D. Senior, and S.A. Thomas, Int. J. Miner. Process 78(1), 49 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 52074069, 52174314), the Natural Science Foundation of Hebei Province (Nos. E2020501022, E2021501029, E2022501030), the Fundamental Research Funds for the Central Universities (No. N2223027), the Science and Technology Project of Hebei Education Department (No. ZD2021331) and Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (No. 22567627H) for the financially supported of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenning Mu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Mu, W., Zhong, P. et al. Extraction of Metals from Nickel Concentrate by Low-Temperature NH4HSO4 Roasting-Water Leaching and Efficient Separation of Iron and Copper. JOM 75, 3435–3445 (2023). https://doi.org/10.1007/s11837-023-05886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05886-4

Navigation