Skip to main content
Log in

The Powder Breakage Behavior and Mechanism During Semi-solid Powder Forming

  • Microstructural Evolution in Powder Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Semi-solid powder forming (SPF) has been widely used to prepare metal matrix composites, during which powder breakage plays an important role in grain refinement and densification process. However, it is not easy to directly observe because of the complicated SPF process, resulting in few investigations. Therefore, based on semisolid compression of AA2024 porous materials, powder breakage behavior and mechanism were studied by introducing the continuity, capillary force, and Newtonian fluid and Roscoe–Einstein model in this work. The results indicate that when the continuity CSS≈1, the powders are not crushed, the liquid solidified as short-rod shapes distributing within a powder is regarded as small holes, and its influence is ignored. When CSS = 0.384–0.608, the powders break up along grain boundaries partially occupied by liquid, with their solid-bonding being torn open, resulting in transgranular ruptures. Its breakage resistance is the combined force acted by the solid-bonding and liquid. When CSS < 0.384, the solid grains are wrapped by liquid with few deformation resistances, regarded as a Newtonian fluid. The breakage resistance of semi-solid powders was calculated by the deduced mathematical equation, and it further confirmed the above results. The breakage coefficient representing the broken degree was calculated and then proved to be consistent with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Aghajani, V. Pouyafar, and R. Meshkabadi, P. I. MECH. ENG. E-J PRO 1, 12 (2022).

    Google Scholar 

  2. L.L. Chen, Y.S. Qi, Y.H. Fei, Y.W. Liu, and Z.M. Du, Mater. Tran. 61, 1239 (2020).

    Article  Google Scholar 

  3. L.L. Chen, Y.S. Qi, Y.H. Fei, and Z.M. Du, Met. Mater. Int. 27, 4263 (2021).

    Article  Google Scholar 

  4. X. Luo, S.H. Yang, M.Y. Li, Z.M. Tang, S.L. Wang, B.S. Huang, and T. Indian, I. Metals 74, 12 (2021).

    Google Scholar 

  5. P.B. Li, B. Cao, W.T. Tan, and M.M. Gao, J. Alloy. Compd. 818, 152925 (2020).

    Article  Google Scholar 

  6. P.B. Li, L.Y. Chen, B. Cao, and K.R. Shi, J. Alloy. Compd. 823, 153815 (2020).

    Article  Google Scholar 

  7. A. Javdani, A.H. Daei-Sorkhabi, and T. Nonferr, Metal. Soc. 28, 1298 (2018).

    Google Scholar 

  8. X. Zhang, Y. Wang, T. Chen, H. Xu, and J. Ma, Mater. Sci. Eng. A 838, 142781 (2022).

    Article  Google Scholar 

  9. Z.Q. Mo, Y.Z. Liu, J.J. Geng, and T. Wang, Mater. Sci. Eng. A 652, 305 (2016).

    Article  Google Scholar 

  10. M. Wu, Y.Z. Liu, T. Wang, and K.B. Yu, Mater. Sci. Eng. A 674, 144 (2016).

    Article  Google Scholar 

  11. X. Luo, Y.Z. Liu, C.X. Gu, and Z.L. Li, Powder. Technol. 261, 161 (2014).

    Article  Google Scholar 

  12. X. Luo, M.Y. Li, J. Ren, Y.L. Zhao, M. Wu, and B.S. Huang, JOM 74, 899–908 (2022).

    Article  Google Scholar 

  13. M. Wu, J. Liu, Y.Z. Liu, X. Luo, B. Wang, and C.Y. Du, Mater. Res. Express 8, 066503 (2021).

    Article  Google Scholar 

  14. X. Luo, and Y.Z. Liu, JOM 68, 3078 (2016).

    Article  Google Scholar 

  15. Y.F. Wu, and G.Y. Kim, Powder. Technol. 214, 252 (2011).

    Article  Google Scholar 

  16. Y.F. Wu, and G.Y. Kim, J. Mater. Process. Tech. 216, 484 (2015).

    Article  Google Scholar 

  17. X. Luo, C. Fang, Z. Fan, B.S. Huang, and J. Yang, Mater. Res. Express 6, 076528 (2019).

    Article  Google Scholar 

  18. S. Karagadde, P.D. Lee, B. Cai, J.L. Fife, M.A. Azeem, K.M. Kareh, C. Puncreobutr, D. Tsivoulas, T. Connolley, and R.C. Atwood, Nat. Comm. 6, 8300 (2015).

    Article  Google Scholar 

  19. K. Yuan, and J.F. Wen, Ceram. Int. 4, 28566 (2021).

    Article  Google Scholar 

  20. V. Pejchal, G. Žagar, R. Charvet, C. Dénéréaz, and A. Mortensen, J. Mech. Phys. Solids 99, 70 (2016).

    Article  Google Scholar 

  21. R. Liburkin, D. Portnikov, and H. Kalman, Powder. Technol. 284, 344 (2015).

    Article  Google Scholar 

  22. B.P. Saha, V. Kumar, S.V. Joshi, A. Balakrishnan, and C.L. Martin, Powder. Technol. 224, 90 (2012).

    Article  Google Scholar 

  23. P. Chivavibul, M. Watanabe, S. Kuroda, K. Jin, M. Komatsu, K. Sato, and J. Kitamura, J. Therm. Spray. Techn. 20, 1098 (2011).

    Article  Google Scholar 

  24. B.S. Meher, R. Saha, and D. Chaira, J. Alloy. Compd. 2, 159688 (2021).

    Article  Google Scholar 

  25. R. Li, M.L. Qin, C.C. Liu, Z. Chen, X.L. Wang, and X.H. Qu, Adv. Powder. Technol. 6, 1603 (2017).

    Article  Google Scholar 

  26. C.C. Wang, C.C. Jia, C.C.P. Gao, G.C. Gai, and Y.F. Yang, Rare Met. 34, 183 (2014).

    Article  Google Scholar 

  27. P.B. Li, T.J. Chen, S.Q. Zhang, and R.G. Guan, Metals 5, 547 (2015).

    Article  Google Scholar 

  28. M. Wu, J. Liu, X. Luo, Y.Z. Liu, R.Y. Cai, W. Xu, and X. Chen, Materials Rep. 36, 24 (2021).

    Google Scholar 

  29. M. Wu, Y.Z. Liu, Z.Y.B. Zeng, and W.Y. Luo, JOM 69, 763 (2017).

    Article  Google Scholar 

  30. J. Liu, and R.M. German, Metall. Mater. Trans. A 30, 211 (1999).

    Google Scholar 

  31. M. Wu (Ph.D. Dissertation, South China University of Technology, IA, 2018).

  32. Z.H. Chen and D. Chen (Chemical Industry Press, Beijing, 2012), p.185–235.

  33. X.P. Ren and Y.L. Kang (Metallurgical Industry Press, Beijing, 1998), p.71–83.

  34. S. Shima, and M. Oyane, Int. J. Mech. Sci. 18, 285 (1976).

    Article  Google Scholar 

  35. Y.Z. Liu, X. Luo, and Z.L. Li, J. Mater. Process. Tech. 214, 165 (2014).

    Article  Google Scholar 

  36. H.V. Atkinson, Prog. Mater. Sci. 50, 341 (2005).

    Article  Google Scholar 

  37. L.S. Wu, M. Ek, M.H. Song, and S.C. Du, Steel. Res. Int. 82, 388 (2011).

    Article  Google Scholar 

  38. C.M. Chen, C.C. Yang, and C.G. Chao, J. Mater. Process. Tech. 167, 103 (2005).

    Article  Google Scholar 

  39. M. Wu, B. Wang, X. Luo, M. Liu, Y.K. Wang, J.J. Yu, and Y. Li, Mater. Res. Express 12, 9 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from Science and Technology Planning Projects of Guangzhou (202102080110), Sichuan Science and Technology Program (2020YFH0151), Guangdong Province Nature Foundation (2022A1515011065), and Guangdong Polytechnic Normal University talent scientific research launch project (2021SDKYA006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wu or Xia Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Liu, J., Luo, X. et al. The Powder Breakage Behavior and Mechanism During Semi-solid Powder Forming. JOM 75, 2511–2524 (2023). https://doi.org/10.1007/s11837-023-05868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05868-6

Navigation