Skip to main content
Log in

Flow Behavior and Processing Map for Hot Deformation of W-3Re-5HfC Alloy

  • The Role of Refractory Elements in Advanced Alloys and Ceramics for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The hot deformation behavior of W-3Re-5HfC alloy was investigated by compression at the temperature range of 1200–1500°C and the strain rate range of 0.001–1 s−1 on a Gleeble-1500D thermal simulator. The results show that the flow stress increases with increasing strain rates or decreasing deformation temperature. The deformation temperature and strain rates affect the flow behavior, exhibiting typical hardening, softening and steady stages. The constitutive equation was established based on the experimental data. The apparent activation energy Q is estimated to be 361 kJ mol−1. Hot processing maps have been constructed at the true strain of 0.1 and 0.6. Moreover, the areas of 1200–1300°C/0.001–0.1 s−1 and 1400–1500°C/0.1–1 s−1 are identified as instability area. Dynamic recovery and dynamic recrystallization occur in the stable area 1500°C/1 s−1, and the mechanism of the stable area is dominated by dynamic recovery and grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.S. Fisher and D. Dever, Acta Mater. 18, 265 (1970).

    Article  Google Scholar 

  2. E.Y. Ivanov, C. Suryanara, and B.D. Bryskin, Mater. Sci. Eng. A. 251, 255 (1998).

    Article  Google Scholar 

  3. V. Krsjak, S.H. Wei, S. Antusch, and Y. Dai, J. Nucl. Mater. 450, 81 (2014).

    Article  Google Scholar 

  4. M.L. Ramalingam and D.L. Jacobson, J. Less-Common Met. 123, 153 (1986).

    Article  Google Scholar 

  5. L. Romaner, C. Ambrosch-Draxl, and R. Pippan, Phys. Rev. Lett. 104, 195503 (2010).

    Article  Google Scholar 

  6. H. Li, M. Zeng, X. Liang, Z. Li, and Y. Liu, T Nonferr Metal Soc. 22, 754 (2012).

    Article  Google Scholar 

  7. J. Wang, G.Q. Zhao, and M.J. Li, Mater & Des. 103, 268 (2016).

    Article  Google Scholar 

  8. Z. Li, Y.B. Chen, S.Z. Wei, F.N. Xiao, S.H. Siyal, and L.J. Xu, J. Alloys Compd. 802, 118 (2019).

    Article  Google Scholar 

  9. Y.C. Li, W. Zhang, J.F. Li, X.H. Lin, X.Q. Gao, F.Z. Wei, and G.J. Zhang, Mater. Sci. Eng. A. 814, 141198 (2021).

    Article  Google Scholar 

  10. S.A. Sani, H. Arabi, and G.R. Ebrahimi, Mater. Sci. Eng. A. 764, 138165 (2019).

    Article  Google Scholar 

  11. W. Zhang, X.Q. Gao, J. Cheng, Z.W. Hu, L.P. Li, B. Zhao, and P.X. Zhang, Rare Metal Mater. Eng. 47, 0485 (2018).

    Article  Google Scholar 

  12. B.C. Xie, H. Yu, T. Sheng, Y.H. Xiong, Y.Q. Ning, and M.W. Fu, J. Alloys Compd. 803, 16 (2019).

    Article  Google Scholar 

  13. C.M. Sellars and W.J. Tegart, Acta Mater. 14, 1136 (1966).

    Article  Google Scholar 

  14. C. Bruni, A. Forcellese, and F. Gabrielli, J. Mater. Process Technol. 125, 242 (2002).

    Article  Google Scholar 

  15. P. Lin, A. Feng, S. Yuan, G. Li, and J. Shen, Mater. Sci. Eng. A. 563, 16 (2013).

    Article  Google Scholar 

  16. D.H. Qin, M.J. Wang, C.Y. Sun, Z.X. Su, L.Y. Qian, and Z.H. Sun, Mater. Sci. Eng. A. 788, 139537 (2020).

    Article  Google Scholar 

  17. T. Dummer, J.C. Lasalvia, and G. Ravichandran, Acta Mater. 46, 6267 (1998).

    Article  Google Scholar 

  18. Y.V.R.K. Prasad and T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998).

    Article  Google Scholar 

  19. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Mater. Sci. Eng. A. 284, 184 (2000).

    Article  Google Scholar 

  20. X. Xia, K. Zhang, M. Ma, and T. Li, J. Magnes. Alloys 8, 917 (2020).

    Article  Google Scholar 

  21. Y.V.R.K. Prasad, Metall. Mater. Trans. A. 27, 235 (1996).

    Article  Google Scholar 

  22. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, and K.A. Lark, Metall. Mater. Trans. A. 15, 1984 (1883).

    Google Scholar 

  23. Y. Wu, Y. Liu, C. Li, X. Xia, Y. Huang, and H. Li, J. Alloys Compd. 712, 687 (2017).

    Article  Google Scholar 

  24. S. Gourdet and F. Montheillet, Acta Mater. 51, 2685 (2003).

    Article  Google Scholar 

  25. A. Belyakov, H. Miura, and T. Sakai, Scripta Mater. 43, 21 (2000).

    Article  Google Scholar 

  26. R. Kaibyshev, D. Zhemchuzhnikova, and A. Mogucheva, Mater. Sci. Forum 735, 265 (2013).

    Article  Google Scholar 

  27. S.V. Divinski, G. Reglitz, H. Sner, Y. Estrin, and G. Wilde, Acta Mater. 59, 2011 (1974).

    Google Scholar 

  28. T. Sakai, H. Miura, A. Goloborodko, and O. Sitdikov, Acta Mater. 57, 153 (2009).

    Article  Google Scholar 

  29. H. Lim, J.D. Carroll, J.R. Michael, C.C. Battaile, and J.M.D. Lane, Acta Mater. 185, 1 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key R&D projects in Shaanxi Province (2022GY-409), the applied basic research projects of Northwest Institute for Non-Ferrous Metal Research (YK2303), the basic research project of State Administration of Science and the Technology and Industry for National Defense and the scientific and technological innovation team of Shaanxi Provincial Department of Science and Technology (2021TD-10) and special funds for scientific and technological innovation of Shaanxi provincial state-owned capital operation budget.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Zhang or Jianfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, W., Lin, X. et al. Flow Behavior and Processing Map for Hot Deformation of W-3Re-5HfC Alloy. JOM 75, 4739–4748 (2023). https://doi.org/10.1007/s11837-023-05788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05788-5

Navigation