Skip to main content
Log in

Cyclic Oxidation and Diffusion-Controlled Performance of Ti2AlC MAX-Phase Produced by Spark Plasma Sintering

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Al2O3 forming MAX-phase Ti2AlC has potential to be used in the high-temperature combustion chambers of aircraft engines. In this work, Ti2AlC powder was compressed and synthesized by spark plasma sintering (SPS) at 1200°C and 30 MPa for different periods of time. The surface morphology, cross-section microstructure, mapping elemental distribution analysis, phase transition analysis, and mechanical properties were analyzed using a scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and nanoindentation techniques. The results revealed that between 24 h and 100 h, Ti2AlC structure was primarily composed of rutile TiO2, with a small amount of α-Al2O3 and numerous planar defects. When the oxidation time was increased, some additional oxides such as rutile-TiO2, α-Al2O3, TiO2-Al2TiO5, and TiO2-α-Al2O3 were also formed. Although the planar defects were reduced at 300 h due to the inward diffusion of O2− and outward diffusion of Al3+ and Ti4+, they spread throughout the entire structure rather than forming layers, leading to a significant loss in oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.J. Tallman, B. Anasori, and M.W. Barsoum, Mater. Res. Lett. 1, 115 (2013).

    Google Scholar 

  2. T. Huang, P. Song, C. Li, Y. Shu, B. Sun, Q. Ji, M. Arif, and J. Yi, Ceram. Int. 46, 12275 (2020).

    Google Scholar 

  3. S. Ali, P. Song, G. Murtaza, T. Huang, R. Ali, S.A. Ahmad, and J. Lu, Mater. Sci. Semicond. Process. 146, 106650 (2022).

    Google Scholar 

  4. W. Jeitschko, H. Nowotny, and F.W. Benesovsky, J. Chem. Sci. 95, 178 (1964).

    Google Scholar 

  5. T. Huang, C. Deng, P. Song, J. Lü, C. Li, Y. Shu, B. Sun, S.A. Ahmad, Q. Ji, and J. Yi, Ceram. Int. 46, 24930 (2020).

    Google Scholar 

  6. C. Li, T. Huang, P. Song, X. Yuan, J. Feng, K. Lü, Q. Li, W. Duan, and J. Lu, Ceram. Int. 46, 24930 (2020).

    Google Scholar 

  7. Q. Li, P. Song, K. Lü, W. Huang, W. Duan, T. Huang, and J. Lu, Ceram. Int. 44, 23273 (2018).

    Google Scholar 

  8. X. He, X. Yuan, H. Xu, P. Song, X. Yu, C. Li, T. Huang, Q. Li, K. Lü, and J. Feng, Ceram. Int. 45, 14546 (2019).

    Google Scholar 

  9. J. Wang, M. Khan, L. Tiehu, E. Javed, A. Zada, A. Hussain, Z. Wahab, M. Kashif, S.U. Abid, A. Raza, A. Rakha, H.A. Rizwan, and W. Arshad, Bull. Mater. Sci. 45, 160 (2022).

    Google Scholar 

  10. S. Zhao, H. Ma, X. Li, S. Sui, T. Shao, J. Wang, B. Feng, D. Wei, Q. Li, and S. Qu, Ceram. Int. 48, 13340 (2022).

    Google Scholar 

  11. Q. Li, X. Yuan, H. Xu, P. Song, Q. Li, K. Lü, T. Huang, C. Li, and J. Lu, Ceram. Int. 45, 13119 (2019).

    Google Scholar 

  12. M. Khan, L. Tiehu, A. Hussain, A. Raza, A. Zada, D. Alei, A.R. Khan, R. Ali, H. Hussain, and J. Hussain, Diam. Relat. Mater. 126, 109077 (2022).

    Google Scholar 

  13. H. Nowotny, P. Rogl, and J.C. Schuster, J. Solid. State. Chem. 44, 126 (1982).

    Google Scholar 

  14. M.W. Barsoum and J. Prog, Solid. State. Chem. 28, 201 (2000).

    Google Scholar 

  15. M.W. Barsoum and T.E. Raghy, J. Am. sci. 89, 334 (2001).

    Google Scholar 

  16. H. Yasmeen, A. Zada, S. Ali, I. Khan, W. Ali, W. Khan, M. Khan, N. Anwar, A. Ali, and A. Muhammad, J Chin Chem Soc. 67, 1611 (2020).

    Google Scholar 

  17. P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman, Thin Solid Films 518, 1851 (2010).

    Google Scholar 

  18. Z. Ali, L. Tian, B. Zhang, N. Ali, M. Khan, and Q. Zhang, New J. Chem 103, 42 (2017).

    Google Scholar 

  19. C. Hu, H. Zhang, F. Li, Q. Huang, and Y. Bao, Int. J. Refract. Hard. Met. 36, 300 (2013).

    Google Scholar 

  20. M.W. Barsoum and M. Radovic, Annu. Rev. Mater. Sci. 41, 195 (2011).

    Google Scholar 

  21. M. Radovic and M.W. Barsoum, J. Am. Ceram. Soc. 92, 20 (2013).

    Google Scholar 

  22. S. Ali, J. Lü, P. Song, C. Li, R. Ali, and J. Lu, Mater. Res. Express. 6, 1262 (2019).

    Google Scholar 

  23. R. Ali, T. Huang, P. Song, D. Zhang, S. Ali, M. Arif, S. Awais, D. Hanifi, and J. Lu, Ceram. Int. 48, 4188 (2022).

    Google Scholar 

  24. M. Khan, L. Tiehu, S.B.A. Zaidi, E. Javed, A. Hussain, A. Hayat, A. Zada, D. Alei, and A. Ullah, Polym. Int. 70, 1733 (2021).

    Google Scholar 

  25. P. Eklund, J. Rosen, and P.O.A. Persson, J. Phys. D. 50, 113001 (2017).

    Google Scholar 

  26. X.H. Wang and Y.C. Zhou, Oxid. Met. 59, 303 (2003).

    Google Scholar 

  27. B.R. Maier, B.L. Garcia-Diaz, B. Hauch, L.C. Olson, R.L. Sindelar, and K. Sridharan, J. Nucl. Mater. 466, 712 (2015).

    Google Scholar 

  28. S. Ali, T. Huang, P. Song, S.H. Shah, R. Ali, M. Arif, and J. Lu, Phys. Lett. B. 35, 215 (2021).

    Google Scholar 

  29. O. Wilhelmsson, J.-P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P.Å. Persson, H. Högberg, S. Li, R. Ahuja, and O. Eriksson, J. Cryst. Growth. 291, 290 (2006).

    Google Scholar 

  30. J. Jiang, A. Fasth, P. Nylen, and W. Choi, J. Therm. Spray Technol. 18, 194 (2009).

    Google Scholar 

  31. M. Sonestedt, J. Frodelius, J.-P. Palmquist, H. Högberg, L. Hultman, and K. Stiller, J. Mater. Sci. 45, 2760 (2010).

    Google Scholar 

  32. J. Frodelius, E.M. Johansson, J.M. Córdoba, M. Odén, P. Eklund, and L.T. Hultman, Int. J. Appl. Ceram. Technol. 8, 74 (2011).

    Google Scholar 

  33. K. Chen, P. Song, C. Hua, Y. Zhou, T. Huang, C. Li, and J. Lu, Mater. Res. Express. 5, 086504 (2018).

    Google Scholar 

  34. J. Frodelius, P. Eklund, M. Beckers, P.Å. Persson, H. Högberg, and L.T. Hultman, Thin Solid Films 518, 1621 (2010).

    Google Scholar 

  35. J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-Raghy, and Y. Sohn, Oxid. Met. 68, 97 (2007).

    Google Scholar 

  36. H. Gutzmann, F. Gärtner, D. Höche, C. Blawert, and T. Klassen, J. Therm. Spray Technol. 22, 406 (2013).

    Google Scholar 

  37. C. Li, X. Yuan, D. Li, P. Song, Z. Li, T. Huang, J. Feng, Y. He, R. Zhai, and Q. Li, Corros. Sci. 195, 109967 (2022).

    Google Scholar 

  38. G. Messing, L. Stevenson, and V.P.E. Raghavan, Science 322, 383 (2008).

    Google Scholar 

  39. R. Prescott and M. Graham, J. Oxid Met. 38, 233 (1992).

    Google Scholar 

  40. Z. Lin, M. Zhuo, M. Li, J. Wang, and Y. Zhou, Acta Mater. 56, 1115 (2007).

    Google Scholar 

  41. X. Wang and Y. Zhou, IJMR. 93, 66 (2002).

    Google Scholar 

  42. X. Wang and Y. Zhou, Int. J. Mater. Res. 93, 66 (2002).

    Google Scholar 

  43. V. Somani and S.J. Kalita, J. Am. Ceram. Soc. 90, 2372 (2007).

    Google Scholar 

  44. T. Zhao, W. Jin, Y. Wang, X. Ji, H. Yan, M. Khan, Y. Jiang, A. Dang, H. Li, and T. Li, Mat. Lett. 212, 1 (2018).

    Google Scholar 

  45. M. Khan, L. Tiehu, T. Zhao, A.A. Khurram, I. Khan, A. Ullah, A.L. Lone, and S. Iqbal, Int. J. Refract. Hard Met. 73, 46 (2018).

    Google Scholar 

  46. A. Rehman, M. Khan, Z. Maosheng, A. Riaz, and A. Hayat, Heat Mass Transf. 57, 765 (2021).

    Google Scholar 

  47. M. McCoy, S. Dregia, and W.E. Lee, J. Mater. Res. 9, 2040 (1994).

    Google Scholar 

  48. W. Lee, I. Reaney, and M. McCoy, Br. Ceram. Proc. 8, 199 (1995).

    Google Scholar 

  49. J.D. Kuenzly and D. Douglass, Oxid. Met. 8, 139 (1974).

    Google Scholar 

  50. F. Pan, M. Khan, L. Tiehu, E. Javed, A. Hussain, A. Zada, D. Alei, and Z. Wahab, J. Polym. Eng. 42(9), 795 (2022).

    Google Scholar 

  51. A. Katsman, H.J. Grabke, and L. Levin, Oxid. Met. 46, 313 (1996).

    Google Scholar 

  52. D.B. Lee and S.W. Park, Mater. Sci. Eng. A. 434, 147 (2006).

    Google Scholar 

  53. D. Taylor, J. Br. Ceram. Trans. 86, 1 (1987).

    Google Scholar 

  54. M. Khan, L. Tiehu, A.A. Khurram, T. Zhao, C. Xiong, Z. Ali, T.A. Abbas, I. Ahmad, A.L. Lone, S. Iqbal, and A. Ali, Chiang Mai J. Sci. 44, 114 (2017).

    Google Scholar 

  55. M. Barsoum and T. El-Raghy, Metall. Mater. Trans. A. 31, 1857 (2000).

    Google Scholar 

  56. N. Shahzad, F. Chen, and M. Khan, Mat. Lett. 163(15), 266 (2016).

    Google Scholar 

  57. M. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, J. Electrochem. Soc. 148, C551 (2001).

    Google Scholar 

  58. X.H. Wang, and Y.C. Zhou, J. Mater. Sci. Technol. 26, 385 (2010).

    Google Scholar 

  59. M. Dahlqvist, B. Alling, and J. Rosén, Phys. Rev. B. 81, 024111 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [Grant No. 51961019], and the China Postdoctoral Science Foundation (Grant No. 2019M663910XB).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding authors

Correspondence to Peng Song, Muhammad Khan or Taihong Huang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 208 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Song, P., Khan, M. et al. Cyclic Oxidation and Diffusion-Controlled Performance of Ti2AlC MAX-Phase Produced by Spark Plasma Sintering. JOM 75, 4980–4992 (2023). https://doi.org/10.1007/s11837-023-05780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05780-z

Navigation