Skip to main content
Log in

Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

AlSiMgMn-xCu (x = 0.1wt.%, 0.3wt.%, 0.6wt.%, 0.8wt.%) alloys were produced by a high-vacuum die-casting (HVDC) process, and the effect of varying Cu contents on the microstructure evolution and mechanical properties under as-cast and T6 heat-treatment conditions have been systemically investigated. The results indicated that the microstructure under the as-cast state consists of α-Al, eutectic Si, β-Mg2Si, Q-Al5Cu2Mg8Si6, and θ-Al2Cu phases. Increasing the Cu content brought about an apparent change in the main precipitate of the alloys after T6 heat treatment. When the Cu content is 0.1 wt.%, the precipitate is only β′′ phase. As the Cu content increases to 0.3 wt.% and 0.6 wt.%, the β′′ and Q′ phases were co-precipitated in the α-Al matrix. As the Cu content further increases to 0.8 wt.%, the θ′ and Q′ phases were co-precipitated in the α-Al matrix and the predominant precipitate was the θ′ phase. As the content of Cu increases from 0.1 wt.% to 0.8 wt.%, the yield strength and ultimate tensile strength after T6 heat treatment increase to 241 MPa and 366 MPa, respectively. Meanwhile, the elongation increases to 8.2%. The improved mechanical properties are mainly attributed to the co-precipitation of the β′′, Q′, and θ′ phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, and J.H. Sokolowski, J. Mater. Process. Technol. 203, 333 https://doi.org/10.1016/j.jmatprotec.2007.10.023 (2008).

    Article  Google Scholar 

  2. H.I. Laukli, C.M. Gourlay, A.K. Dahle, and O. Lohne, Effects of Si content on defect band formation in hypoeutectic Al-Si die castings. Mater. Sci. Eng. A 413, 92 https://doi.org/10.1016/j.msea.2005.08.194 (2005).

    Article  Google Scholar 

  3. Y. Terada, I. Daigo, and T. Sato, Mater. Sci. Eng. A 523, 214 https://doi.org/10.1016/j.msea.2009.07.001 (2009).

    Article  Google Scholar 

  4. L. Wang, M. Makhlouf, and D. Apelian, Int. Mater. Rev. 40, 221 https://doi.org/10.1179/imr.1995.40.6.221 (1995).

    Article  Google Scholar 

  5. Y. Bai and H. Zhao, Mater. Des. 31, 4237 https://doi.org/10.1016/j.matdes.2010.04.005 (2010).

    Article  Google Scholar 

  6. F. Liu, H. Zhao, R. Yang, and F. Sun, Mater. Today Commun. 19, 114 https://doi.org/10.1016/j.mtcomm.2019.01.009 (2019).

    Article  Google Scholar 

  7. H. Zhao, F. Wang, Y.Y. Li, and W. Xia, J. Mater. Proc. Technol. 209, 4537 https://doi.org/10.1016/j.jmatprotec.2008.10.028 (2009).

    Article  Google Scholar 

  8. F. Liu, H. Zhao, R. Yang, and F. Sun, Materials. 12, 2065 https://doi.org/10.3390/ma12132065 (2019).

    Article  Google Scholar 

  9. H. Zhao, F. Liu, C. Hu, R. Yang, and F. Sun, Light Met. https://doi.org/10.1007/978-3-030-05864-7_30 (2019).

    Article  Google Scholar 

  10. M.C. Srivastava and O. Lohne, Int. J. Metal Cast. 11, 356 https://doi.org/10.1007/s40962-016-0073-z (2017).

    Article  Google Scholar 

  11. S. Beroual, Z. Boumerzoug, P. Paillard, and Y. Borjon-Piron, J. Alloys Compd. 784, 1026 https://doi.org/10.1016/j.jallcom.2018.12.365 (2019).

    Article  Google Scholar 

  12. S.G. Shabestari, H. Moemeni, and J. Mater, Process. Technol. 153–154, 193 https://doi.org/10.1016/j.jmatprotec.2004.04.302 (2004).

    Article  Google Scholar 

  13. Y. Li, S. Brusethaug, and A. Olsen, Scripta. Mater. 4, 99 https://doi.org/10.1016/j.scriptamat.2005.08.044 (2006).

    Article  Google Scholar 

  14. L. Zuo, B. Ye, J. Feng, X. Kong, H. Jiang, and W. Ding, J. Mater. Sci. Technol. 34, 164 https://doi.org/10.1016/j.jmst.2017.06.011 (2018).

    Article  Google Scholar 

  15. G. Wang, Q. Sun, L. Feng, L. Hui, and C. Jing, Mater. Des. 28, 1001 https://doi.org/10.1016/j.matdes.2005.11.015 (2007).

    Article  Google Scholar 

  16. C. Wu, S. Lee, M. Hsieh, and J. Lin, Mater. Charact. 61, 1074 https://doi.org/10.1016/j.matchar.2010.06.022 (2010).

    Article  Google Scholar 

  17. M.S. Salleh and M.Z. Omar, Trans. Nonferrous Met. Soc. China 25, 3523 https://doi.org/10.1016/S1003-6326(15)63995-4 (2015).

    Article  Google Scholar 

  18. X. Dong, H. Yang, X. Zhu, and S. Ji, J. Alloys Compd. 773, 86 https://doi.org/10.1016/j.jallcom.2018.09.260 (2019).

    Article  Google Scholar 

  19. W. Dai, C. Zhang, L. Zhao, and C. Li, Mater. Today Commun. 33, 104195 https://doi.org/10.1016/j.mtcomm.2022.104195 (2022).

    Article  Google Scholar 

  20. S.H. Kayani, S. Park, K. Euh, J.B. Seol, J.G. Kim, and H. Sung, Mater. Charact. 190, 112019 https://doi.org/10.1016/j.matchar.2022.112019 (2022).

    Article  Google Scholar 

  21. S. Jason (TESLA, INC), die cast aluminum alloys for structural components, Appl NO: PCT/US2021/014177.

  22. S.S. Wang, J.T. Jiang, G.H. Fan, A. Panindre, G. Frankel, and L. Zhen, Acta Mater. 131, 233 https://doi.org/10.1016/j.actamat.2017.03.074 (2017).

    Article  Google Scholar 

  23. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M. Zhang, Acta Mater. 61, 360 https://doi.org/10.1016/j.actamat.2012.09.075 (2013).

    Article  Google Scholar 

  24. X.P. Ding, H. Cui, J.X. Zhang, H.X. Li, M.X. Guo, Z. Lin, L.Z. Zhuang, and J.S. Zhang, Mater. Des. 65, 1229 https://doi.org/10.1016/j.matdes.2014.09.086 (2015).

    Article  Google Scholar 

  25. H. Yang, S. Ji, W. Yang, and Z. Fan, Mater. Sci. Eng. A 642, 340 https://doi.org/10.1016/j.msea.2015.07.008 (2015).

    Article  Google Scholar 

  26. C. Xu, H. He, W. Yu, and L. Li, Mater. Sci. Eng. A 744, 28 https://doi.org/10.1016/j.msea.2018.11.149 (2019).

    Article  Google Scholar 

  27. S. Tabibian, E. Charkaluk, A. Constantinescu, G. Guillemot, and F. Szmytka, Mater. Sci. Eng. A 646, 190 https://doi.org/10.1016/j.msea.2015.08.051 (2015).

    Article  Google Scholar 

  28. Y.J. Li, S. Brusethaug, and A. Olsen, Scripta Mater. 54, 99 https://doi.org/10.1016/j.scriptamat.2005.08.044 (2006).

    Article  Google Scholar 

  29. X. Gao, R. Chen, T. Liu, H. Fang, G. Qin, Y. Su, and J. Guo, J. Mater. Sci. 57, 6573 https://doi.org/10.1007/s10853-022-07066-2 (2022).

    Article  Google Scholar 

  30. H. Yang, S. Ji, W. Yang, Y. Wang, and Z. Fan, Mater. Sci. Eng. A 642, 340 https://doi.org/10.1016/j.msea.2015.07.008 (2015).

    Article  Google Scholar 

  31. Y. Weng, Z. Jia, L. Ding, K. Du, H. Duan, Q. Liu, and X. Wu, Scripta Mater. 151, 33 https://doi.org/10.1016/j.scriptamat.2018.03.032 (2018).

    Article  Google Scholar 

  32. M. Torsæter, W. Lefebvre, C.D. Marioara, S.J. Andersen, J.C. Walmsley, and R. Holmestad, Scripta Mater. 64, 817 https://doi.org/10.1016/j.scriptamat.2011.01.008 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (No. 51875211), Natural Science Foundation of Guangdong Province (No. 2021A151510042), the Fundamental Research Funds for the Central Universities and Supported by Beijing Natural Science Foundation (No. L223001) and the Key Area Research and Development Program of Guangdong Province (No. 2020B010186002), Project of Key Technology Program of Foshan (No. 1920001001040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiting Zheng or Haidong Zhao.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zheng, H., Jiang, Y. et al. Effect of Low Cu Content and Heat Treatment on the Microstructure and Mechanical Properties of High-Vacuum Die-Cast AlSiMgMn Alloys. JOM 75, 1345–1356 (2023). https://doi.org/10.1007/s11837-022-05651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05651-z

Navigation