Skip to main content
Log in

Reduction Behavior of Ilmenite Mud Waste in Roasting and High-Temperature Smelting Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ilmenite mud generated in the sulfate process for titanium dioxide pigment production is a secondary titanium resource with a high content of silica, iron oxides, and sulfur. However, the ilmenite mud is mostly landfilled. We propose roasting and high-temperature smelting processes to investigate the reduction behavior of ilmenite mud waste. Sulfur is present in ilmenite mud in the form of sulfates, and is completely removed via roasting. The phases in the roasted ilmenite mud were titanium dioxide, pseudobrookite, and silica. The roasted ilmenite was smelted to recover iron, silicon, and titanium. All the iron oxides were reduced to metallic iron. As a result, the carbothermic reduction of titanium dioxide occurred, and titanium carbide was formed. Silica was first converted into mullite using alumina and then reduced to form liquid silicon, which was combined with metallic iron to form an iron-silicon alloy. After a reduction time of 60 min, most of the silica was converted into the iron-silicon alloy, and the alloy and titanium carbide were completely separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Titanium Dioxide Market Size, Share & Trends Analysis Report By Grade (Anatase, Rutile), By Production Process (Sulfate, Chloride), By Application (Paints & Coatings, Plastics), By Region, And Segment Forecasts, 2021 – 2028. Available online: https://www.grandviewresearch.com/industry-analysis/titanium-dioxide-industry (accessed on 3 August 2022).

  2. F. Chyliński, J. Bobrowicz, and P. Łukowski, Materials (Basel). 13, 3555. (2020).

    Article  Google Scholar 

  3. T.H. Nguyen and M.S. Lee, Miner. Process. Extr. Metall. Rev. 40, 231. (2019).

    Article  Google Scholar 

  4. M.J. Gázquez, J.P. Bolívar, R. Garcia-Tenorio, and F. Vaca, Mater. Sci. Appl. 5, 441. (2014).

    Google Scholar 

  5. F. Chyliński and K. Kuczyński, Materials (Basel). 13, 2904. (2020).

    Article  Google Scholar 

  6. M. Contreras, M.I. Martín, M.J. Gázquez, M. Romero, and J.P. Bolívar, Key Eng. Mater. 663, 75. (2015).

    Article  Google Scholar 

  7. M. Contreras, M.I. Martín, M.J. Gázquez, M. Romero, and J.P. Bolívar, Constr. Build. Mater. 72, 31. (2014).

    Article  Google Scholar 

  8. M.C. Llanes, M.J.G. González, S.M.P. Moreno, and J.P.B. Raya, Environ. Sci. Pollut. Res. 25, 24695. (2018).

    Article  Google Scholar 

  9. F. Meng, T. Xue, Y. Liu, W. Wang, and T. Qi, Hydrometallurgy 161, 112. (2016).

    Article  Google Scholar 

  10. G. Protano, D. Baroni, S. Bianchi, C. Russo, and M. Salleolini, Appl. Geochemistry 120, 104666. (2020).

    Article  Google Scholar 

  11. Q. Wu, Y. Cui, Q. Li, and J. Sun, J. Hazard. Mater. 283, 748. (2015).

    Article  Google Scholar 

  12. M.J. Gazquez, J. Mantero, F. Mosqueda, I. Vioque, R. García-Tenorio, and J.P. Bolívar, Chemosphere 274, 129732. (2021).

    Article  Google Scholar 

  13. International Atomic Energy Agency, Radiation Protection and NORM Residue Management in the Titanium Dioxide and Related Industries (Vienna, 2012).

  14. J. Mantero, M.J. Gazquez, J.P. Bolivar, R. Garcia-Tenorio, and F. Vaca, J. Environ. Radioact. 120, 26. (2013).

    Article  Google Scholar 

  15. M.J. Gázquez, J. Mantero, J.P. Bolívar, R. García-Tenorio, F. Vaca, and R.L. Lozano, J. Hazard. Mater. 191, 269. (2011).

    Article  Google Scholar 

  16. S.M. Pérez-Moreno, M.J. Gázquez, A.G. Barneto, and J.P. Bolívar, Thermochim. Acta 552, 114. (2013).

    Article  Google Scholar 

  17. J. Bobrowicz and F. Chyliński, J. Therm. Anal. Calorim. 126, 493. (2016).

    Article  Google Scholar 

  18. D.H. Kim, T.S. Kim, J.H. Heo, H.S. Park, and J.H. Park, Metall. Mater. Trans. B 50, 1830. (2019).

    Article  Google Scholar 

  19. H.S. Park, and Y.J. Kim, J. Hazard. Mater. 365, 659. (2019).

    Article  Google Scholar 

  20. G. Chen, Y. Ling, Q. Li, H. Zheng, Q. Jiang, K. Li, L. Gao, M. Omran, and J. Chen, J. Mater. Res. Technol. 9, 7079. (2020).

    Article  Google Scholar 

  21. T. Bešenić, J. Baleta, K. Pachler, and M. Vujanović, Energy Convers. Manag. 217, 112762. (2020).

    Article  Google Scholar 

  22. R. Hofmann-Sievert and J.A.W. Castleman, J. Phys. Chem. 88, 3329. (1984).

    Article  Google Scholar 

  23. L.J. Larson, M. Kuno, and F.M. Tao, J. Chem. Phys. 112, 8830. (2000).

    Article  Google Scholar 

  24. W. Lv, X. Lv, J. Xiang, J. Wang, X. Lv, C. Bai, and B. Song, Int. J. Miner. Process. 169, 176. (2017).

    Article  Google Scholar 

  25. K. Choi, H.S. Jeon, S. Lee, Y. Kim, and H. Park, Metall. Mater. Trans. B 53, 334. (2022).

    Article  Google Scholar 

  26. J. Zhang, Q. Zhu, Z. Xie, C. Lei, and H. Li, Metall. Mater. Trans. B 44, 897. (2013).

    Article  Google Scholar 

  27. J. Zhang, G. Zhang, Q. Zhu, C. Lei, Z. Xie, and H. Li, Metall. Mater. Trans. B 45, 914. (2014).

    Article  Google Scholar 

  28. K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, Waste Manag. Res. 24, 74. (2006).

    Article  Google Scholar 

  29. A. Jha and S.J. Yoon, J. Mater. Sci. 34, 307. (1999).

    Article  Google Scholar 

  30. D.H. Filsinger and D.B. Bourrie, J. Am. Ceram. Soc. 73, 1726. (1990).

    Article  Google Scholar 

  31. M. Tangstad, Ferrosilicon and Silicon Technology, Twelfth Ed (Elsevier, 2013).

  32. A. Schei, J. K. Tuset, and H. Tveit, Production of High Silicon Alloys (Tapir Forlag, Trondheim, Norway, 1998).

  33. Y. Liu, S. Wang, S. Jiang, X. Wang, J. Kong, P. Xing, Y. Zhuang, and X. Luo, J. Mater. Res. Technol. 8, 4470. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20229A10100040, development of high technology materials processing from electronic wastes by utilizing natural resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunsik Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K., Ahn, J.G. & Park, H. Reduction Behavior of Ilmenite Mud Waste in Roasting and High-Temperature Smelting Process. JOM 75, 549–556 (2023). https://doi.org/10.1007/s11837-022-05624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05624-2

Navigation