Skip to main content
Log in

Resource Utilization and High-Value Targeted Conversion for Secondary Aluminum Dross: A Review

  • Reprocessing and Recycling of Tailings from Metallurgical Process
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Secondary aluminum dross (SAD) is a solid waste that is separated from primary aluminum dross, which contains approximately 40–60 wt.% alumina, 2–5 wt.% aluminum, and 10–30 wt.% poisonous and harmful aluminum nitride. SAD serves as both a resource and a contaminant. Its harmlessness is mainly found in the extraction of alumina from the SAD through hydrometallurgy, and its resource utilization mainly occurs through its use for the preparation of high-value products, such as ceramics, refractory insulation bricks, and construction materials. Research on the harmless extraction of alumina has mainly focused on the preparation and high-temperature roasting of alumina hydroxide precursors and the hydrolysis and oxidation of aluminum nitride (AlN). Studies on the high-value targeted conversion of extracted Al2O3 to resources have mainly focused on the preparation of porous materials and firing of SAD-sintered bricks. We suggest the use of SAD for the fabrication of porous-based composite phase change thermal storage materials, primarily by employing Al2O3, the primary component of SAD. As a result, the mechanism of porous structure generation and regulation, binding properties of the SAD porous structure and phase change materials, and mechanism of the porous structure effect on heat storage performance should be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Meshram and K.K. Singh, Resour. Conserv. Recycl. 130, 95. https://doi.org/10.1016/j.resconrec.2017.11.026 (2018).

    Article  Google Scholar 

  2. X. Zhao, Y. Liu, G. Lyu, Y. Zhang, and T. Zhang, Light Metals 2022 (Springer, Cham, 2022), pp 48–55. https://doi.org/10.1007/978-3-030-92529-1_7.

    Book  Google Scholar 

  3. M.S. Satish Reddy and D. Neeraja, Sadhana 43, 1. https://doi.org/10.1007/s12046-018-0866-2 (2018).

    Article  Google Scholar 

  4. H. Shen, B. Liu, S. Zhao, J. Zhang, J. Yuan, Y. Zhang, and S. Zhang, Ceram. Int. 47, 21744. https://doi.org/10.1016/j.ceramint.2021.04.189 (2021).

    Article  Google Scholar 

  5. E. David and J. Kopac, Mater. Today Proc. 10, 340. https://doi.org/10.1016/j.matpr.2018.10.415 (2019).

    Article  Google Scholar 

  6. A. Gil and S.A. Korili, Chem. Eng. J. 289, 74. https://doi.org/10.1016/j.cej.2015.12.069 (2016).

    Article  Google Scholar 

  7. T.T.N. Nguyen, S.J. Song, and M.S. Lee, J. Mater. Res. Technol. 9, 2568. https://doi.org/10.1016/j.jmrt.2019.12.087 (2020).

    Article  Google Scholar 

  8. R.D. Peterson, A Historical Perspective on Dross Processing. Paper presented at the Materials Science Forum (Trans Tech Publications, Ltd., 2011). https://doi.org/10.4028/www.scientific.net/MSF.693.13

  9. Z. Zuo, H. Lv, R. Li, F. Liu, and H. Zhao, Resour. Conserv. Recycl. 174, 105768. https://doi.org/10.1016/j.resconrec.2021.105768 (2021).

    Article  Google Scholar 

  10. X. Zhu, Q. Jin, and A.C.S. Sustain, Chem. Eng. 9, 6776. https://doi.org/10.1021/acssuschemeng.1c00960 (2021).

    Article  Google Scholar 

  11. W.D. Xing, B.D. Ahn, and M.S. Lee, Resour. Recycl. 26, 53. https://doi.org/10.7844/kirr.2017.26.3.53 (2017).

    Article  Google Scholar 

  12. Y. Zhang, H. Ni, S. Lv, X. Wang, S. Li, and J. Zhang, Coatings 11, 1039. https://doi.org/10.3390/coatings11091039 (2021).

    Article  Google Scholar 

  13. Z. Su, K. Liu, K. Lin, S. Liu, Y. Zhang, and T. Jiang, J. Mater. Res. Technol. 19, 1203. https://doi.org/10.1016/j.jmrt.2022.05.110 (2022).

    Article  Google Scholar 

  14. A. Jiménez, A. Misol, Á. Morato, V. Rives, M.A. Vicente, and A. Gil, J. Clean. Prod. 297, 126667. https://doi.org/10.1016/j.jclepro.2021.126667 (2021).

    Article  Google Scholar 

  15. H. Lv, H. Zhao, Z. Zuo, R. Li, and F. Liu, J. Mater. Res. Technol. 9, 9735. https://doi.org/10.1016/j.jmrt.2020.06.051 (2020).

    Article  Google Scholar 

  16. L. He, L. Shi, Q. Huang, W. Hayat, Z. Shang, T. Ma, M. Wang, W. Yao, H. Huang, and R. Chen, Sci. Total Environ. 777, 146123. https://doi.org/10.1016/j.scitotenv.2021.146123 (2021).

    Article  Google Scholar 

  17. F. Liu, H. Lv, Z. Zuo, M. Xie, R. Li, and H. Zhao, ACS Sustain. Chem. Eng. 9, 13751. https://doi.org/10.1021/acssuschemeng.1c04380 (2021).

    Article  Google Scholar 

  18. H. Lv, M. Xie, L. Shi, H. Zhao, Z. Wu, L. Li, R. Li, and F. Liu, Ceram. Int. 48, 953. https://doi.org/10.1016/j.ceramint.2021.09.180 (2022).

    Article  Google Scholar 

  19. E. David and J. Kopac, J. Hazard. Mater. 261, 316. https://doi.org/10.1016/j.jhazmat.2013.07.042 (2013).

    Article  Google Scholar 

  20. S.K. Verma, V.K. Dwivedi, and S.P. Dwivedi, Mater. Today Proc. 43, 547. https://doi.org/10.1016/j.matpr.2020.12.045 (2021).

    Article  Google Scholar 

  21. U. Singh, M.S. Ansari, S.P. Puttewar, and A. Agnihotri, Russ. J. Non-ferrous Met. 57, 296. https://doi.org/10.3103/S1067821216040131 (2016).

    Article  Google Scholar 

  22. Q. Li, Q. Yang, G. Zhang, and Q. Shi, Hydrometallurgy 182, 121. https://doi.org/10.1016/j.hydromet.2018.10.015 (2018).

    Article  Google Scholar 

  23. A. Meshram, R. Jha, and S. Varghese, Mater. Today Proc. 46, 1487. https://doi.org/10.1007/s10163-019-00856-y (2021).

    Article  Google Scholar 

  24. C. Scharf and A. Ditze, Hydrometallurgy 157, 140. https://doi.org/10.1016/j.hydromet.2015.08.006 (2015).

    Article  Google Scholar 

  25. A. Kocjan, A. Dakskobler, K. Krnel, and T. Kosmač, J. Eur. Ceram. Soc. 31, 815. https://doi.org/10.1016/j.jeurceramsoc.2010.12.009 (2011).

    Article  Google Scholar 

  26. S. Lv, W. Ni, H. Ni, and Y. Zhu, Chin. J. Nonferrous Met. (in Chinese) 30, 920. (2020).

    Google Scholar 

  27. M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili, and A. Gil, Miner. Eng. 140, 105884. https://doi.org/10.1016/j.mineng.2019.105884 (2019).

    Article  Google Scholar 

  28. X.L. Huang and T. Tolaymat, IPCBEE. 66, 173. https://doi.org/10.7763/IPCBEE.2014.V66.35 (2014).

    Article  Google Scholar 

  29. B. Niu, Z.B. Hu, B.P. Li, and J.Q. Wang, Shandong Ceram. (in Chinese) 6, 11. (2010).

    Google Scholar 

  30. R.L. Wang, J.L. Sun, J.L. Bu, and Z.F. Wang, J. Mater. Eng. (in Chinese). 6, 29. (2011).

    Google Scholar 

  31. X. Chen, J. Yang, G. Huang, T.T. Li, J. Xiang, T.D. Chen, and P. Liu, Vac. Electron. (in Chinese). 1, 27. (2020).

    Google Scholar 

  32. Y.J. Yao, B. Liu, J. Su, X.L. Jiang, and T. Wang, J. Nanjing Univ. Inf. Sci. Technol. (in Chinese) 6, 69. (2014).

    Google Scholar 

  33. T. Zaki, K.I. Kabel, and H. Hassan, Ceram. Int. 38, 2021. https://doi.org/10.1016/j.ceramint.2011.10.037 (2012).

    Article  Google Scholar 

  34. J. Xiao, H. Deng, Y. Wan, J. Li, Y. Liu, and J. Cent, South Univ. Technol. 13, 367. https://doi.org/10.1007/s11771-006-0050-4 (2006).

    Article  Google Scholar 

  35. A. Bunderšek, B. Japelj, B. Mušič, N. Rajnar, S. Gyergyek, R. Kostanjšek, and P. Krajnc, Polym. Compos. 37, 1659. https://doi.org/10.1002/pc.23338 (2016).

    Article  Google Scholar 

  36. T.T.N. Nguyen and M.S. Lee, Resour. Recycl. 28, 23. https://doi.org/10.7844/kirr.2019.28.4.23 (2019).

    Article  Google Scholar 

  37. G. Yamamoto, M. Omori, K. Yokomizo, T. Hashida, and K. Adachi, Mater. Sci. Eng. B. 148, 265. https://doi.org/10.1016/j.mseb.2007.09.013 (2008).

    Article  Google Scholar 

  38. B. Yu, Z. Tian, J. Xiong, and L. Xiang, J. Nanomater. 2016, 1. https://doi.org/10.1155/2013/718979 (2013).

    Article  Google Scholar 

  39. W. Cai, J. Yu, and M. Jaroniec, J. Mater. Chem. 20, 4587. https://doi.org/10.1039/b924366f (2010).

    Article  Google Scholar 

  40. W. Cai, J. Yu, S. Gu, and M. Jaroniec, Cryst. Growth Des. 10, 3977. https://doi.org/10.1021/cg100544w (2010).

    Article  Google Scholar 

  41. W.L. Wang, J.Q. Bi, Y.Q. Qi, Z. Zhang, Z. Xing, H.L. Zhu, D. Guo, J.J. Xu, and Y.J. Bai, Powder Technol. 201, 273. https://doi.org/10.1016/j.powtec.2010.04.010 (2010).

    Article  Google Scholar 

  42. M. Türk, M. Altıner, S. Top, S. Karaca, and C. Bouchekrit, JOM. 72, 3358. https://doi.org/10.1007/s11837-020-04281-7 (2020).

    Article  Google Scholar 

  43. L. Qingsheng, Z. Chunming, F. Hui, and X. Jilai, Light Metals 2011 (Springer, Cham, 2011), pp 197–200. https://doi.org/10.1007/978-3-319-48160-9_34.

    Book  Google Scholar 

  44. R. Hou, H. Wang, J. Chen, F. Zhang, and J. Song, Chem. Ind. Eng. Prog. (in Chinese) 35, 2523. https://doi.org/10.16085/j.issn.1000-6613.2016.08.34 (2016).

    Article  Google Scholar 

  45. X. Kong, W. Liu, X. Liu, P. Zhang, X. Li, and Z. Wang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 36, 811. https://doi.org/10.1007/s11595-021-2475-x (2021).

    Article  Google Scholar 

  46. Y. Mathieu, B. Lebeau, and V. Valtchev, Langmuir 23, 9435. https://doi.org/10.1021/la700233q (2007).

    Article  Google Scholar 

  47. C. Hai, Y. Zhou, L. Zhang, Y. Sun, X. Li, Y. Shen, H. Zhan, Q. Han, J. Liu, and H. Ren, CrystEngComm 19, 3850. https://doi.org/10.1039/C7CE00822H (2017).

    Article  Google Scholar 

  48. A. Cruz-López, O.V. Cuchillo, I.J. Ramírez, L.M. Bautista-Carrillo, and E. Zarazua-Morin, J. Ceram. Process. Res. 9, 474. (2008).

    Google Scholar 

  49. T.I. Kim, H.S. Yun, Y. Jon, G.B. Han, S.I. Chae, and R.N. An, NANO 14, 1950046. https://doi.org/10.1142/S1793292019500462 (2019).

    Article  Google Scholar 

  50. B. Zhu, B. Fang, and X. Li, Ceram. Int. 36, 2493. https://doi.org/10.1016/j.ceramint.2010.07.007 (2010).

    Article  Google Scholar 

  51. E.A. El-Katatny, S.A. Halawy, M.A. Mohamed, and M.I. Zaki, Powder Technol. 132, 137. https://doi.org/10.1016/S0032-5910(03)00047-0 (2003).

    Article  Google Scholar 

  52. L.F. How, A. Islam, M.S. Jaafar, and Y.H. Taufiq-Yap, Waste Biomass Valoriz. 8, 321. https://doi.org/10.1007/s12649-016-9591-4 (2017).

    Article  Google Scholar 

  53. M. Mahinroosta and A. Allahverdi, J. Clean. Prod. 179, 93. https://doi.org/10.1016/j.jclepro.2018.01.079 (2018).

    Article  Google Scholar 

  54. M. Beaulieu, S. Chabot, Y. Charest, and J.F. Savard, Processes for Treating Aluminium Dross Residues. U.S. Patent No. 7,651,676. 26 Jan. 2010. https://patents.google.com/patent/US7906097B2/en

  55. Y.J.O. Asencios and M.R. Sun-Kou, Appl. Surf. Sci. 258, 10002. https://doi.org/10.1016/j.apsusc.2012.06.063 (2012).

    Article  Google Scholar 

  56. B. Liu, Y. Chai, Y. Li, A. Wang, Y. Liu, and C. Liu, Appl. Catal. A 471, 70. https://doi.org/10.1016/j.apcata.2013.11.017 (2014).

    Article  Google Scholar 

  57. H. Shen, L. Gao, F. Ma, B. Rao, P. Jiang, G. Gao, and K. Peng, Asia Pac. J. Chem. Eng. 16, e2623. https://doi.org/10.1002/apj.2623 (2021).

    Article  Google Scholar 

  58. M.S. Ghamsari, Z.A.S. Mahzar, S. Radiman, A.M.A. Hamid, and S.R. Khalilabad, Mater. Lett. 72, 32. https://doi.org/10.1016/j.matlet.2011.12.040 (2012).

    Article  Google Scholar 

  59. T.N.N. Thi and M.S. Lee, Resour. Recycl. 26, 77. https://doi.org/10.7844/kirr.2017.26.5.77 (2017).

    Article  Google Scholar 

  60. R. Guo, X.Z. Liu, Q.D. Li, and X.M. Yi, Inorg. Chem. Ind. (in Chinese). 49, 14. (2017).

    Google Scholar 

  61. A.D.V. Souza, L.L. Sousa, L. Fernandes, P.H.L. Cardoso, and R. Salomão, J. Eur. Ceram. Soc. 35, 1943. https://doi.org/10.1016/j.jeurceramsoc.2015.01.003 (2015).

    Article  Google Scholar 

  62. H. Guo, J. Wang, X. Zhang, F. Zheng, and P. Li, Metall. Mater. Trans. B. 49, 2906. https://doi.org/10.1007/s11663-018-1341-5 (2018).

    Article  Google Scholar 

  63. P. Sooksaen and P. Puathawee, Conversion of Aluminum Dross Residue Into Value-Added Ceramics. Paper presented at the Key engineering materials, (Trans Tech Publications Ltd., 2016). https://doi.org/10.4028/www.scientific.net/kem.690.71

  64. M.F. Zawrah, M.A. Taha, and H.A. Abo Mostafa, Ceram. Int. 44, 10693. https://doi.org/10.1016/j.ceramint.2018.03.101 (2018).

    Article  Google Scholar 

  65. S. Zhang, W. Zhu, Q. Li, W. Zhang, and X. Yi, J. Mater. Sci. Chem. Eng. 07, 87. https://doi.org/10.4236/msce.2019.712010 (2019).

    Article  Google Scholar 

  66. N. Su, Z. Li, Y. Ding, H. Yang, J. Zhang, and G. Fu, Materials (Basel). 14, 7803. https://doi.org/10.3390/ma14247803 (2021).

    Article  Google Scholar 

  67. S. Ariharan, B. Wangaskar, V. Xavier, T. Venkateswaran, and K. Balani, Ceram. Int. 45, 18951. https://doi.org/10.1016/j.ceramint.2019.06.133 (2019).

    Article  Google Scholar 

  68. D. Bajare, G. Bumanis, and L. Upeniece, Procedia Eng. 57, 149. https://doi.org/10.1016/j.proeng.2013.04.022 (2013).

    Article  Google Scholar 

  69. P. Sooksaen and P. Puathawee, Properties of Unglazed Ceramics Containing Aluminum Dross as a Major Component. Paper presented at the Solid State Phenomena (Trans Tech Publications, Ltd., 2017). https://doi.org/10.4028/www.scientific.net/ssp.266.182

  70. U. Cinarli and A. Turan, Min. Metall. Explor. 38, 257. https://doi.org/10.1007/s42461-020-00344-0 (2021).

    Article  Google Scholar 

  71. W. Li, X. Zhang, J. Zhang, H. Shen, J. Yang, Y. Liu, J. Liu, S. Zhang, and J. Yang, J. Am. Ceram. Soc. 105, 3197. https://doi.org/10.1111/jace.18322 (2022).

    Article  Google Scholar 

  72. S. Lee, C.Y. Lee, J.-H. Ha, J. Lee, I.H. Song, and S.H. Kwon, Appl. Sci. 11, 4517. https://doi.org/10.3390/app11104517 (2021).

    Article  Google Scholar 

  73. H. Shen, B. Liu, Z. Shi, S. Zhao, J. Zhang, and S. Zhang, J. Hazard. Mater. 418, 126331. https://doi.org/10.1016/j.jhazmat.2021.126331 (2021).

    Article  Google Scholar 

  74. J. Liu, W. Huo, X. Zhang, B.O. Ren, Y. Li, Z. Zhang, and J. Yang, J. Adv. Ceram. 7, 89. https://doi.org/10.1007/s40145-018-0260-x (2018).

    Article  Google Scholar 

  75. M.F. Zawrah, I.M. Hassab-Allah, M.H. Ata, and H. Shouib, Mater. Res. Express. 6, 096588. https://doi.org/10.1088/2053-1591/ab316e (2019).

    Article  Google Scholar 

  76. C. Dai, Development of Aluminum Dross-Based Material for Engineering Application. Diss, Worcester Polytechnic Institute (2012). https://web.wpi.edu/Pubs/ETD/Available/etd-010612-155135/

  77. S.F. Yang, C.Y. Yeh, Y.H. Chang, T.M. Wang, W.C. Lee, K.S. Sun, and C.C. Tzeng, Method for Producing a Refractory Material from Aluminum Residues. U.S. Patent No. 8,540,910. 24 Sep. 2013. https://patents.google.com/patent/US8540910B2/en

  78. S.C. Chiang and Y.P. Liu, Recycling Method for Aluminum Dust Collection and Aluminum Metallic Smelting Slag. U.S. Patent No. 9,169,531. 27 Oct. 2015. https://patents.google.com/patent/US9169531B2/en

  79. A. Li, H. Zhang, and H. Yang, Ceram. Int. 40, 12585. https://doi.org/10.1016/j.ceramint.2014.04.069 (2014).

    Article  Google Scholar 

  80. P. Ramaswamy, S.A. Gomes, and N.P. Ravichander, Utilization of Aluminum Dross: Refractories from Industrial Waste. Paper presented at the IOP Conference Series: Materials Science and Engineering, Bengaluru, India, 16–18 August 2018. https://doi.org/10.1088/1757-899X/577/1/012101

  81. M. Mueller, On the Manufacture of Dense Microporous Refractory Materials. Pt. 2. Manufacture of Microporous and Compact Refractory Materials. Pt. 2. Paper presented at the CFI (Ceramic Forum International/Berichte der DKG, Germany, 2004). https://www.osti.gov/etdeweb/biblio/20490531

  82. S.O. Adeosun, E.I. Akpan, and M.O. Dada, JOM. 66, 2253. https://doi.org/10.1007/s11837-014-1179-5 (2014).

    Article  Google Scholar 

  83. S.O. Adeosun, O.I. Sekunowo, O.O. Taiwo, W.A. Ayoola, and A. Machado, Adv. Mater. 3, 6. https://doi.org/10.11648/j.am.20140302.11 (2014).

    Article  Google Scholar 

  84. A. Hamza, I. Kocserha, and A. Simon, Mater. Sci. Eng. 45, 106. https://www.proquest.com/docview/2532206898?pq-origsite=gscholar&fromopenview=true (2020).

  85. H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. De Camargo, J.C.S. Portela, and N.E. Narita, Ceram. Int. 34, 581. https://doi.org/10.1016/j.ceramint.2006.12.007 (2008).

    Article  Google Scholar 

  86. S.J. Zhang, Q.D. Li, W.J. Zhang, X.Z. Liu, R. Guo, and X.M. Yi, J. Ceram. (in Chinese). 39, 529. (2018).

    Google Scholar 

  87. W. Cui, H. Zhang, Y. Xia, Y. Zou, C. Xiang, H. Chu, S. Qiu, F. Xu, and L. Sun, J. Therm. Anal. Calorim. 131, 57. https://doi.org/10.1007/s10973-017-6170-2 (2018).

    Article  Google Scholar 

  88. R.S.S. Azevedo, J.R. de Sousa, M.T.F. Araujo, A.J. Martins Filho, B.N. de Alcantara, F.M.C. Araujo, M.G.L. Queiroz, A.C.R. Cruz, B.H.B. Vasconcelos, J.O. Chiang, L.C. Martins, L.M.N. Casseb, E.V. da Silva, V.L. Carvalho, B.C.B. Vasconcelos, S.G. Rodrigues, C.S. Oliveira, J.A.S. Quaresma, and P.F.C. Vasconcelos, Sci. Rep. 8, 1. https://doi.org/10.1038/s41598-017-17765-5 (2018).

    Article  Google Scholar 

  89. Y. Guan, T. Wang, R. Tang, W. Hu, J. Guo, H. Yang, Y. Zhang, and S. Duan, Renew. Energy. 150, 1047. https://doi.org/10.1016/j.renene.2019.11.026 (2020).

    Article  Google Scholar 

  90. D. Han, B.G. Guene Lougou, Y. Xu, Y. Shuai, and X. Huang, Appl. Energy. 264, 114674. https://doi.org/10.1016/j.apenergy.2020.114674 (2020).

    Article  Google Scholar 

  91. D.G. Atinafu, W. Dong, U. Berardi, and S. Kim, Chem. Eng. J. 394, 124806. https://doi.org/10.1016/j.cej.2020.124806 (2020).

    Article  Google Scholar 

  92. T. Nomura, J. Yoolerd, N. Sheng, H. Sakai, Y. Hasegawa, M. Haga, and T. Akiyama, Sol. Energy Mater. Sol. Cells. 193, 281. https://doi.org/10.1016/j.solmat.2018.12.023 (2019).

    Article  Google Scholar 

  93. Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang, M. Zhou, Y. Han, T. Tanaka, A. Wang, and T. Zhang, Nat. Commun. 8, 1. https://doi.org/10.1038/ncomms16100 (2017).

    Article  Google Scholar 

  94. W.J. Zhang, W. Wu, S.Z. Li, Z.J. Zhang, and X.M. Yi, Chem. Ind. Eng. Prog. (in Chinese). 41, 920. (2022).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant number 51302221), Zhaoqing Dazheng Aluminum Co.'s Technology Development Project (grant number K4050722004), and Second Batch of Xijiang Innovation and Entrepreneurship Team in Zhaoqing City (grant number 2017A0109004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Yi, X. Resource Utilization and High-Value Targeted Conversion for Secondary Aluminum Dross: A Review. JOM 75, 279–290 (2023). https://doi.org/10.1007/s11837-022-05560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05560-1

Navigation