Skip to main content
Log in

Molecular Dynamics Study of Compressive Properties and Atomistic Behavior of Boron Nitride Nanosheets Reinforced in Aluminum Matrix Composites

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Boron nitride nanosheet (BNNS) has been widely used in aluminum (Al) matrix composites because of its extraordinary mechanical properties. However, the strengthening mechanism of BNNS in the Al matrix was seldom studied. In this work, three different BNNS/Al models were constructed, and the effect of BNNS’s volume fraction on the compressive properties of BNNS/Al composites was investigated using molecular dynamics. With the increase of BNNS’s volume fraction, the ultimate strength and Young’s modulus are significantly enhanced, but the critical strain decreases gradually. The stress distribution reveals the contribution of the BNNS and Al matrix. In addition, the atomic configurations were captured to analyze the reason for the decrease in critical strain. The interaction between the Al matrix and BNNS is evident at the interface. This results in the great deformation of the Al matrix in the direction perpendicular to the BNNS. Since BNNS can transfer the compression load and block the propagation of stacking faults in the Al matrix, BNNS/Al composites have excellent compression properties in both the elastic and plastic stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.P. Hansora, N.G. Shimpi, and S. Mishra, JOM 67, 2855. (2015).

    Article  Google Scholar 

  2. I. Lahiri, S. Das, C. Kang, and W. Choi, JOM 63, 70. (2011).

    Article  Google Scholar 

  3. S. Park, Y. Kim, H. Jung, J. Park, N. Lee, and Y. Seo, Sci. Rep. 7, 17290. (2017).

    Article  Google Scholar 

  4. L. Wu, Alamusi, J. Xue, T. Itoi, N. Hu, Y. Li, C. Yan, J. Qiu, H. Ning, W. Yuan, and B. Gu, J. Intel. Mater. Syst. Str. 25, 1813. (2014).

    Article  Google Scholar 

  5. Y. Ma, J. Chen, Y. Hu, Y. Zhang, Z. Zhang, J. Zhan, A. Chen, and Q. Peng, JOM 72, 2445. (2020).

    Article  Google Scholar 

  6. J. Sun and S. Du, Rsc Adv. 9, 40642. (2019).

    Article  Google Scholar 

  7. B. Mortazavi and Y. Rémond, Phys. E 44, 1846. (2012).

    Article  Google Scholar 

  8. A. Falin, Q. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, M.R. Barnett, Y. Chen, R.S. Ruoff, and L.H. Li, Nat. Commun. 8, 15815. (2017).

    Article  Google Scholar 

  9. Y. Lin and J.W. Connell, Nanoscale 4, 6908. (2012).

    Article  Google Scholar 

  10. V. Sharma, H.L. Kagdada, P.K. Jha, P. Piewak, and K.J. Kurzydłowski, Renew. Sustain Energy Rev. 120, 109622. (2020).

    Article  Google Scholar 

  11. L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen, ACS Nano 8, 1457. (2014).

    Article  Google Scholar 

  12. J. Dong, Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai, H. Zhang, Z. Liu, and X. Bao, J. Am. Chem. Soc. 142, 17167. (2020).

    Article  Google Scholar 

  13. P. Sedigh, A. Zare, and A. Montazeri, Comp. Mater. Sci. 171, 109227. (2020).

    Article  Google Scholar 

  14. J. Li, Y. Huang, B. Zeng, C. Feng, and F. Zhu, 2021 22nd Int. Conf. Electron. Packag. Technol. 1, 5. (2021)https://doi.org/10.1109/ICEPT52650.2021.9568013

  15. J. Han, G. Du, W. Gao, and H. Bai, Adv. Funct. Mater. 29, 1900412. (2019).

    Article  Google Scholar 

  16. R. Saggar, H. Porwal, P. Tatarko, I. Dlouhý, and M.J. Reece, Adv. Appl. Ceram. 114, S26. (2015).

    Article  Google Scholar 

  17. Q. Wang, C.R. Bowen, R. Lewis, J. Chen, W. Lei, H. Zhang, M. Li, and S. Jiang, Nano Energy 60, 144. (2019).

    Article  Google Scholar 

  18. C. Yin, Z. Liu, R. Mo, J. Fan, P. Shi, Q. Xu, and Y. Min, Polymer 195, 122455. (2020).

    Article  Google Scholar 

  19. C. Yin, Y. Ma, Z. Liu, J. Fan, P. Shi, Q. Xu, and Y. Min, Polymer 162, 100. (2019).

    Article  Google Scholar 

  20. U. Khan, P. May, A. O’Neill, A.P. Bell, E. Boussac, A. Martin, J. Semple, and J.N. Coleman, Nanoscale 5, 581. (2013).

    Article  Google Scholar 

  21. X. Wang and P. Wu, Acs Appl. Mater. Inter. 9, 19934. (2017).

    Article  Google Scholar 

  22. C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, Adv. Mater. 21, 2889. (2009).

    Article  Google Scholar 

  23. J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang, X. Hu, Y. Bando, and W. Lei, J. Mater. Chem. C 6, 1363. (2018).

    Article  Google Scholar 

  24. G. Han, X. Zhao, Y. Feng, J. Ma, K. Zhou, Y. Shi, C. Liu, and X. Xie, Chem. Eng. J. 407, 127099. (2021).

    Article  Google Scholar 

  25. S.C. Yoo, J. Kim, W. Lee, J.Y. Hwang, H.J. Ryu, and S.H. Hong, Compos. B Eng. 195, 108088. (2020).

    Article  Google Scholar 

  26. R.B. Patel, J. Liu, J. Eng, and Z. Iqbal, J. Mater. Res. 26, 1332. (2011).

    Article  Google Scholar 

  27. Y. Xue, B. Jiang, L. Bourgeois, P. Dai, M. Mitome, C. Zhang, M. Yamaguchi, A. Matveev, C. Tang, Y. Bando, K. Tsuchiya, and D. Golberg, Mater. Des. 88, 451. (2015).

    Article  Google Scholar 

  28. A. Bisht, V. Kumar, L.H. Li, Y. Chen, A. Agarwal, and D. Lahiri, Mater. Sci. Eng. A 710, 366. (2018).

    Article  Google Scholar 

  29. S. Nam, K. Chang, W. Lee, M.J. Kim, J.Y. Hwang, and H. Choi, Sci. Rep. 8, 1614. (2018).

    Article  Google Scholar 

  30. M. He, K. Joshi, and L.V. Zhigilei, J. Mater. Sci. 56, 14598. (2021).

    Article  Google Scholar 

  31. J. Lao, M. Naghdi-Tam, D. Pinisetty, and N. Gupta, JOM 65, 175. (2013).

    Article  Google Scholar 

  32. J. Wang, JOM 67, 1515. (2015).

    Article  Google Scholar 

  33. Z. Cong, and S. Lee, Compos. Struct. 194, 80. https://doi.org/10.1016/j.compstruct.2018.03.103 (2018).

    Article  Google Scholar 

  34. R. Rezaei, M. Shariati, and H. Tavakoli-Anbaran, J. Mater. Res. 33, 1733. (2018).

    Article  Google Scholar 

  35. V. Vijayaraghavan and L. Zhang, JOM 72, 2305. (2020).

    Article  Google Scholar 

  36. C. Zhang, C. Lu, L. Pei, J. Li, R. Wang, and K. Tieu, Carbon 143, 125. (2019).

    Article  Google Scholar 

  37. C. Zhang, C. Lu, G. Michal, J. Li, and R. Wang, Int. J. Mech. Sci. 201, 106460. (2021).

    Article  Google Scholar 

  38. J. Tersoff, Phys. Rev. B 37, 6991. (1988).

    Article  Google Scholar 

  39. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta, Philos. Mag. 88, 1723. (2008).

    Article  Google Scholar 

  40. H. Margenau, Rev. Mod. Phys. 11, 1. (1939).

    Article  Google Scholar 

  41. A. Stukowski, Model. Simul. Mater. Sc. 20, 45021. (2012).

    Article  Google Scholar 

  42. A.P. Thompson, S.J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107. (2009).

    Article  Google Scholar 

  43. S. Plimpton, J. Comput. Phys. 117, 1. (1995).

    Article  Google Scholar 

  44. A. Stukowski, Model. Simul. Mater. Sc. 18, 15012. (2009).

    Article  Google Scholar 

  45. B.K. Choi, G.H. Yoon, and S. Lee, Compos. B Eng. 91, 119. (2016).

    Article  Google Scholar 

  46. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Compos. A Appl. Sci. Manuf. 40, 589. (2009).

    Article  Google Scholar 

  47. A.K. Srivastava, V.K. Pathak, M. Kumar, R. Kumar, and S. Prakash, Mol. Simul. 1, 14. https://doi.org/10.1080/08927022.2022.2060966 (2022).

    Article  Google Scholar 

  48. N. Silvestre, B. Faria, and J.N. Canongia-Lopes, Compos. Sci. Technol. 90, 16. (2014).

    Article  Google Scholar 

  49. S. Zhao and J. Xue, J. Phys. D Appl. Phys. 46, 135303. (2013).

    Article  Google Scholar 

  50. R. Rezaei, Comp. Mater. Sci. 151, 181. (2018).

    Article  Google Scholar 

  51. F. Shuang and K.E. Aifantis, Scr. Mater. 181, 70. (2020).

    Article  Google Scholar 

  52. S. Xu, Y.F. Guo, and A.H.W. Ngan, Int. J. Plast. 43, 116. (2013).

    Article  Google Scholar 

  53. S. Pal, P.N. Babu, B.S.K. Gargeya, and C.S. Becquart, Mater. Chem. Phys. 243, 122593. (2020).

    Article  Google Scholar 

  54. R.Q. Han, H.Y. Song, J.Y. Wang, and Y.L. Li, Phys. B 601, 412620. (2021).

    Article  Google Scholar 

  55. J. Zhu, X. Liu, and Q. Yang, Comp. Mater. Sci. 160, 72. (2019).

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (Numbers: 52075208 and U20A6004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 243 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, Y., Zhou, Y. et al. Molecular Dynamics Study of Compressive Properties and Atomistic Behavior of Boron Nitride Nanosheets Reinforced in Aluminum Matrix Composites. JOM 74, 3518–3530 (2022). https://doi.org/10.1007/s11837-022-05381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05381-2

Navigation