Skip to main content
Log in

Estimation of Realistic Microtexture Region Orientation Distribution Functions Using Eddy Current Data

  • Cold Dwell Fatigue of Titanium Alloy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microtexture regions (MTRs) within titanium alloys are collections of grains with similar crystallographic orientation. The presence of MTRs can be detrimental to the life of an engine component; thus, a method for detecting and characterizing MTR is needed. Eddy current testing, a nondestructive evaluation method, is sensitive to changes in conductivity which are related to local changes in crystallographic orientation. Previous work has demonstrated the ability of eddy current testing to determine the orientation distribution function (ODF) of a simulated MTR within a simulated microstructure using approximate Bayesian computation techniques. This article will extend these methods to realistic MTR configurations. We review the ODF estimation technique, discuss modifications to the algorithm that are required to apply it to realistic microstructures and then demonstrate its use on simulated eddy current data of a real titanium specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Pilchak, A. Hutson, J. Porter, D. Buchanan, and R. John, Proceedings of the 13th World Conference on Titanium, In: V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, M. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (eds.), (Wiley, New Jersey, 2016), p. 993

  2. J. Qui, Y. Ma, J. Lei, Y. Liu, A. Huang, D. Rugg, and R. Yang, Metall. Mater. Trans. A 45, 6075 (2014)

    Article  Google Scholar 

  3. L. Toubal, P. Bocher, and A. Moreau, Int. J. Damage Mech. 24, 629 (2015)

    Article  Google Scholar 

  4. J. Tucker, M. Groeber, L. Semiatin, and A. Pilchak, Proceedings of the 13th world conference on titanium,In: V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, M. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (eds.), (Wiley, New Jersey, 2016), p. 1913

  5. L. Homa, M. Cherry, and J. Wertz, Inverse Problems 37, 065004 (2021)

    Article  Google Scholar 

  6. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping (Gordon and Breach Science Publishers, Philadelphia, 2000), pp. 13–41

    Book  Google Scholar 

  7. A. Pilchak, J. Li, and S. Rokhlin, Metall. Mater. Trans. A 44A, 4891 (2013)

    Google Scholar 

  8. M. Cherry, S. Sathish, R. Mooers, A. Pilchak, and R. Grandhi, IEEE Trans. Magn. 53(5), 1 (2017)

    Article  Google Scholar 

  9. C. Balanis, Advanced Engineering Electromagnetics (Wiley, New Jersey, 2012), pp. 311–337

    Google Scholar 

  10. B. Auld and J. Moulder, J. Nondestruct. Eval. 18(1), 3 (1999)

    Article  Google Scholar 

  11. M. Suunnaker, A. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz, PLoS Comput. Biol. 9, e1002803 (2013)

    Article  Google Scholar 

  12. J. Marin, P. Pudlo, C. Robert, and R. Ryder, Stat. Comput. 22, 1167 (2012)

    Article  MathSciNet  Google Scholar 

  13. S.A. Sisson and Y. Fan, Handbook of Markov Chain Monte Carlo, In: S. Brooks, A. Gelman, G.L. Jones, and X. Meng (eds.), (Chapman and Hall/CRC, New York, 2011), p. 313.

  14. P. Marjoram, J. Molitor, V. Plagnol, and S. Tavare, Proc. Natl. Acad. Sci. 100, 15324 (2003)

    Article  Google Scholar 

  15. P. Del Moral, A. Doucet, and A. Jasra, Stat. Comput. 22, 1009 (2012)

    Article  MathSciNet  Google Scholar 

  16. C. Bingham, Ann. Stat. 2, 1201 (1974)

    Article  Google Scholar 

  17. K. Kunze and H. Schaeben, Math. Geol. 8, 917 (2004)

    Article  Google Scholar 

  18. H. Schaeben, Textures Microstruct. 13, 51 (1990)

    Article  Google Scholar 

  19. S. Niezgoda and J. Glover, Metall. Mater. Trans. A 44A, 4891 (2013)

    Article  Google Scholar 

  20. A. Arguelles and J. Turner, J. Acoust. Soc. Am. 141, 4347 (2017)

    Article  Google Scholar 

  21. F. Dong, X. Wang, Q. Yang, H. Liu, D. Xu, Y. Sun, Y. Zhang, R. Xue, and S. Krishnaswamy, Scr. Mater. 154, 40 (2018)

    Article  Google Scholar 

  22. K. Okazaki and H. Conrad, Trans. Jpn. Inst. Met. 13, 198 (1972)

    Article  Google Scholar 

  23. D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing: ten Lectures on Subjective Computing (Springer, New York, 2007), pp. 144–147

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the Air Force Office of Scientific Research (AFOSR) through Grant 21RXCOR037 under the Dynamic Data and Information Processing (DDIP) program. In addition, Dr. Homa would like to acknowledge support from the Air Force Research Laboratory (AFRL) through Contract FA8650-19-F-5230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Homa.

Ethics declarations

Conflict of interest

On behalf of all authors, Dr. Homa states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homa, L., Cherry, M. & Wertz, J. Estimation of Realistic Microtexture Region Orientation Distribution Functions Using Eddy Current Data. JOM 74, 3693–3708 (2022). https://doi.org/10.1007/s11837-022-05360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05360-7

Navigation