Skip to main content

Advertisement

Log in

Piezoelectric Energy Harvesting Using Flexible Self-Poled Electroactive Nanofabrics Based on PVDF/ZnO-Decorated SWCNT Nanocomposites

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study probes the synergism of electrospinning and zinc oxide-decorated single-walled carbon nanotubes (ZCNT) in enhancing the β-phase nucleation and piezoelectric performance of PVDF. The nanofibers were spun in the form of nonwoven fabrics and characterized for their morphology, crystallinity, polymorphism, and tensile properties. Inclusion of ZCNT significantly promoted the β-phase (~95%) and tensile properties of PVDF, while the total degree of crystallinity was reduced. The highest voltage output of 15.5 V, which is 15 times more than that of the pristine PVDF nanofabrics, and a power density of 8.1 μWcm−2 was attained for the nanogenerator based on 0.75 wt.% ZCNT/PVDF nanofabrics. Implementation of electrospinning process and ZCNT proved to be beneficial in fabricating a flexible, lightweight, and robust nanogenerator for electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Lu, H.P. Lee, and S.P. Lim, Smart Mater. Struct. 13, 57 (2004).

    Article  Google Scholar 

  2. W.H. Duan, Q. Wang, and S.T. Quek, Materials (Basel). 3, 5169 (2010).

    Article  Google Scholar 

  3. C. Luo, S. Hu, M. Xia, P. Li, J. Hu, G. Li, H. Jiang, and W. Zhang, Energy Technol. 6, 922 (2018).

    Article  Google Scholar 

  4. F. Mokhtari, M. Latifi, and M. Shamshirsaz, J. Text. Inst. 107, 1037 (2016).

    Google Scholar 

  5. P. Martins, A.C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).

    Article  Google Scholar 

  6. Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, and P. Deng, and Z. Lin Wang, Nanotechnology 25, 105401 (2014).

    Article  Google Scholar 

  7. Z.H. Liu, C.T. Pan, L.W. Lin, and H.W. Lai, Sensors Actuators A Phys. 193, 13 (2013).

    Article  Google Scholar 

  8. S. Ramasundaram, S. Yoon, K.J. Kim, J.S. Lee, and C. Park, Macromol. Chem. Phys. 210, 951 (2009).

    Article  Google Scholar 

  9. M. Khalifa, A. Mahendran, and S. Anandhan, J. Polym. Res. 26, 1 (2019).

    Article  Google Scholar 

  10. Y. Ting, H. Gunawan, A. Sugondo, and C.W. Chiu, Ferroelectrics 446, 28 (2013).

    Article  Google Scholar 

  11. H. Kim, T. Fernando, M. Li, Y. Lin, and T.-L.B. Tseng, J. Compos. Mater. 52, 1 (2017).

    Google Scholar 

  12. J. Chang, M. Dommer, C. Chang, and L. Lin, Nano Energy 1, 356 (2012).

    Article  Google Scholar 

  13. Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, and A.C.S. Appl, Mater. Interfaces 2, 1759 (2010).

    Article  Google Scholar 

  14. S. Huang, W.A. Yee, W.C. Tjiu, Y. Liu, M. Kotaki, Y.C.F. Boey, J. Ma, T. Liu, and X. Lu, Langmuir 24, 13621 (2008).

    Article  Google Scholar 

  15. H. Parangusan, D. Ponnamma, and M.A.A. Al-Maadeed, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  16. M. Khalifa, B. Deeksha, A. Mahendran, and S. Anandhan, JOM 70, 1313 (2018).

    Article  Google Scholar 

  17. R. Neppalli, S. Wanjale, M. Birajdar, and V. Causin, Eur. Polym. J. 49, 90 (2013).

    Article  Google Scholar 

  18. G.H. Kim, S.M. Hong, and Y. Seo, Phys. Chem. Chem. Phys. 11, 10506 (2009).

    Article  Google Scholar 

  19. Y. Ahn, J.Y. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, and Y. Seo, J. Phys. Chem. C 117, 11791 (2013).

    Article  Google Scholar 

  20. N. Levi, R. Czerw, S. Xing, P. Iyer, and D.L. Carroll, Nano Lett. 4, 1267 (2004).

    Article  Google Scholar 

  21. S. Bairagi, and S.W. Ali, Soft Matter 16, 4876 (2020).

    Article  Google Scholar 

  22. Z.L. Wang, Sci. Sci. 312, 242 (2006).

    Google Scholar 

  23. M.S. Sorayani Bafqi, R. Bagherzadeh, and M. Latifi, J. Polym. Res. 22, 130 (2015).

    Article  Google Scholar 

  24. C.S. Chen, X.H. Chen, B. Yi, T.G. Liu, W.H. Li, L.S. Xu, Z. Yang, H. Zhang, and Y.G. Wang, Acta Mater. 54, 5401 (2006).

    Article  Google Scholar 

  25. D. Chaudhary, S. Singh, V.D. Vankar, and N. Khare, J. Photochem. Photobiol. A Chem. 351, 154 (2018).

    Article  Google Scholar 

  26. A. M. O. De Zevallos-Márquez, M. J. S. P. Brasil, F. Iikawa, A. Abbaspourrad, C. Verissimo, S. a. Moshkalev, and O. L. Alves J. Appl. Phys. 108, 083501 (2010).

  27. Y.T. Lim, and P.K. Shin, J. Comput. Theor. Nanosci. 12, 847 (2015).

    Article  Google Scholar 

  28. S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, and Z. Zhao, Macromolecules 42, 8870 (2009).

    Article  Google Scholar 

  29. H. Von Seggern, and S.N. Fedosov, Appl. Phys. Lett. 81, 2830 (2002).

    Article  Google Scholar 

  30. S. Mishra, K.T. Kumaran, R. Sivakumaran, S.P. Pandian, and S. Kundu, Colloids Surfaces A Physicochem. Eng. Asp. 509, 684 (2016).

    Article  Google Scholar 

  31. J.A. Puértolas, J.F. García-García, F.J. Pascual, J.M. González-Domínguez, M.T. Martínez, and A. Ansón-Casaos, Compos. Sci. Technol. 152, 263 (2017).

    Article  Google Scholar 

  32. D. Karabelli, J.C. Leprêtre, F. Alloin, and J.Y. Sanchez, Electrochim. Acta 57, 98 (2011).

    Article  Google Scholar 

  33. E. Kabir, M. Khatun, L. Nasrin, M.J. Raihan, and M. Rahman, J. Phys. D. Appl. Phys. 50, 163002 (2017).

    Article  Google Scholar 

  34. S. A. Govind S. Ekbote, Mohammed K, Arunjunairaj M. Soft Matter 17, 2215 (2007).

  35. R. Gregorio, J. Appl. Polym. Sci. 100, 3272 (2006).

    Article  Google Scholar 

  36. X. Cai, T. Lei, D. Sun, and L. Lin, RSC Adv. 7, 15382 (2017).

    Article  Google Scholar 

  37. S. Bodkhe, P.S.M. Rajesh, S. Kamle, and V. Verma, J. Polym. Res. 21, 434 (2014).

    Article  Google Scholar 

  38. X. Huang, P. Jiang, C. Kim, F. Liu, and Y. Yin, Eur. Polym. J. 45, 377 (2009).

    Article  Google Scholar 

  39. P. Martins, C. Caparros, R. Gonçalves, P.M. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, J. Phys. Chem. C 116, 15790 (2012).

    Article  Google Scholar 

  40. E. Castanet, M. Thamish, N. Hameed, A. Krajewski, L.F. Dumée, and K. Magniez, Adv. Eng. Mater. 19, 1 (2017).

    Article  Google Scholar 

  41. E. Ruggiero, M.M. Reboredo, and M.S. Castro, J. Compos. Mater. 52, 1399 (2018).

    Article  Google Scholar 

  42. A. Mandal, and A.K. Nandi, J. Mater. Chem. 21, 15752 (2011).

    Article  Google Scholar 

  43. J. Gomes, J.S. Nunes, V. Sencadas, and S. Lanceros-Mendez, Smart Mater. Struct. 19, 65010 (2010).

    Article  Google Scholar 

  44. I.H. Kim, D.H. Baik, and Y.G. Jeong, Macromol. Res. 20, 920 (2012).

    Article  Google Scholar 

  45. C.M. Wu, M.-H. Chou, and W.-Y. Zeng, Nanomaterials 8, 420 (2018).

    Article  Google Scholar 

  46. J. Liu, Y. Zhou, X. Hu, and B. Chu, Appl. Phys. Lett. 112, 232901 (2018).

    Article  Google Scholar 

  47. X. He, S. Baskaran, and J.Y. Fu, Mater. Res. Soc. Symp. Proc. 1403, 247 (2012).

    Article  Google Scholar 

  48. S. Baskaran, N. Ramachandran, X. He, S. Thiruvannamalai, H.J. Lee, H. Heo, Q. Chen, and J.Y. Fu, Phys. Lett. Sect. A Gen. At. Solid State Phys. 375, 2082 (2011).

    Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Stas Vedern, New Markets Development Director, OCSiAl.ru LLC, for the free supply of SWCNT. We would also like to thank Ms. Rashmi, Dr. Sangamesh. R, and Mr. Dhanush for assisting in the SEM, UTM, and TEM analyses, respectively. M.K. would like to thank Kompetenzzentrum Holz GmbH for providing research facilities.

Funding

This work was not funded by any source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anandhan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, M., Peravali, S., Varsha, S. et al. Piezoelectric Energy Harvesting Using Flexible Self-Poled Electroactive Nanofabrics Based on PVDF/ZnO-Decorated SWCNT Nanocomposites. JOM 74, 3162–3171 (2022). https://doi.org/10.1007/s11837-022-05342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05342-9

Navigation